References

References#

[1]

Stefan Posse. Multi-echo acquisition. NeuroImage, 62(2):665–671, 2012. 20 YEARS OF fMRI. URL: https://www.sciencedirect.com/science/article/pii/S1053811911012213, doi:https://doi.org/10.1016/j.neuroimage.2011.10.057.

[2]

Prantik Kundu, Valerie Voon, Priti Balchandani, Michael V. Lombardo, Benedikt A. Poser, and Peter A. Bandettini. Multi-echo fmri: a review of applications in fmri denoising and analysis of bold signals. NeuroImage, 154:59–80, 2017. Cleaning up the fMRI time series: Mitigating noise with advanced acquisition and correction strategies. URL: https://www.sciencedirect.com/science/article/pii/S1053811917302410, doi:https://doi.org/10.1016/j.neuroimage.2017.03.033.

[3]

Valur Olafsson, Prantik Kundu, Eric C. Wong, Peter A. Bandettini, and Thomas T. Liu. Enhanced identification of bold-like components with multi-echo simultaneous multi-slice (mesms) fmri and multi-echo ica. NeuroImage, 112:43–51, 2015. URL: https://www.sciencedirect.com/science/article/pii/S1053811915001536, doi:https://doi.org/10.1016/j.neuroimage.2015.02.052.

[4]

Ottavia Dipasquale, Arjun Sethi, Maria Marcella Laganà, Francesca Baglio, Giuseppe Baselli, Prantik Kundu, Neil A Harrison, and Mara Cercignani. Comparing resting state fmri de-noising approaches using multi-and single-echo acquisitions. PloS one, 12(3):e0173289, 2017.

[5]

Sierra Hovet, Hongliang Ren, Sheng Xu, Bradford Wood, Junichi Tokuda, and Zion Tsz Ho Tse. Mri-powered biomedical devices. Minimally Invasive Therapy & Allied Technologies, 27(4):191–202, 2018.

[6]

Abi Berger. How does it work?: magnetic resonance imaging. BMJ: British Medical Journal, 324(7328):35, 2002.

[7]

Elizabeth DuPre, Wen-Ming Luh, and R Nathan Spreng. Multi-echo fmri replication sample of autobiographical memory, prospection and theory of mind reasoning tasks. Scientific data, 3(1):1–9, 2016.

[8]

P Kundu, N D Brenowitz, V Voon, Y Worbe, P E Vertes, S J Inati, Z S Saad, P A Bandettini, and E T Bullmore. Integrated strategy for improving functional connectivity mapping using multiecho fMRI. Proceedings of the National Academy of Sciences, 110(40):16187–16192, 2013.

[9]

Alexander D Cohen and Yang Wang. Improving the assessment of breath-holding induced cerebral vascular reactivity using a multiband multi-echo asl/bold sequence. Scientific reports, 9(1):1–12, 2019.

[10]

Jelle R. Dalenberg, Liselore Weitkamp, Remco J. Renken, and Gert J. ter Horst. Valence processing differs across stimulus modalities. NeuroImage, 183:734–744, 2018. URL: https://www.sciencedirect.com/science/article/pii/S1053811918307572, doi:https://doi.org/10.1016/j.neuroimage.2018.08.059.

[11]

Meredith A Shafto, Cam-CAN, Lorraine K Tyler, Marie Dixon, Jason R Taylor, James B Rowe, Rhodri Cusack, Andrew J Calder, William D Marslen-Wilson, John Duncan, Tim Dalgleish, Richard N Henson, Carol Brayne, and Fiona E Matthews. The cambridge centre for ageing and neuroscience (Cam-CAN) study protocol: a cross-sectional, lifespan, multidisciplinary examination of healthy cognitive ageing. BMC Neurology, 2014.

[12]

Stephan Heunis, Marcel Breeuwer, César Caballero-Gaudes, Lydia Hellrung, Willem Huijbers, Jacobus FA Jansen, Rolf Lamerichs, Svitlana Zinger, and Albert P Aldenkamp. The effects of multi-echo fmri combination and rapid t2*-mapping on offline and real-time bold sensitivity. NeuroImage, 238:118244, 2021. URL: https://www.sciencedirect.com/science/article/pii/S1053811921005218, doi:https://doi.org/10.1016/j.neuroimage.2021.118244.

[13]

Stefano Moia, Maite Termenon, Eneko Uruñuela, Gang Chen, Rachael C. Stickland, Molly G. Bright, and César Caballero-Gaudes. Ica-based denoising strategies in breath-hold induced cerebrovascular reactivity mapping with multi echo bold fmri. NeuroImage, 233:117914, 2021. URL: https://www.sciencedirect.com/science/article/pii/S1053811921001919, doi:https://doi.org/10.1016/j.neuroimage.2021.117914.

[14]

Jixing Li, Shohini Bhattasali, Shulin Zhang, Berta Franzluebbers, Wen-Ming Luh, R. Nathan Spreng, Jonathan R. Brennan, Yiming Yang, Christophe Pallier, and John Hale. Le petit prince: a multilingual fmri corpus using ecological stimuli. bioRxiv, 2021. URL: https://www.biorxiv.org/content/early/2021/10/04/2021.10.02.462875, arXiv:https://www.biorxiv.org/content/early/2021/10/04/2021.10.02.462875.full.pdf, doi:10.1101/2021.10.02.462875.

[15]

RN Spreng, R Setton, U Alter, BN Cassidy, B Darboh, E DuPre, K Kantarovich, AW Lockrow, L Mwilambwe-Tshilobo, WM Luh, and others. Neurocognitive aging data release with behavioral, structural and multi-echo functional mri measures. Scientific Data, 2022. URL: https://doi.org/10.1038/s41597-022-01231-7, doi:10.1038/s41597-022-01231-7.

[16]

Julien Cohen-Adad, Jonathan R Polimeni, Karl G Helmer, Thomas Benner, Jennifer A McNab, Lawrence L Wald, Bruce R Rosen, and Caterina Mainero. T2* mapping and b0 orientation-dependence at 7 t reveal cyto-and myeloarchitecture organization of the human cortex. Neuroimage, 60(2):1006–1014, 2012.

[17]

Riikka Ruuth, Linda Kuusela, Teemu Mäkelä, Susanna Melkas, and Antti Korvenoja. Comparison of reconstruction and acquisition choices for quantitative t2* maps and synthetic contrasts. European journal of radiology open, 6:42–48, 2019.

[18]

Molly G Bright and Kevin Murphy. Removing motion and physiological artifacts from intrinsic bold fluctuations using short echo data. Neuroimage, 64:526–537, 2013.

[19]

Luca Vizioli, Steen Moeller, Logan Dowdle, Mehmet Akçakaya, Federico De Martino, Essa Yacoub, and Kamil Uğurbil. Lowering the thermal noise barrier in functional brain mapping with magnetic resonance imaging. Nature communications, 12(1):5181, 2021.

[20]

Logan T Dowdle, Luca Vizioli, Steen Moeller, Mehmet Akçakaya, Cheryl Olman, Geoffrey Ghose, Essa Yacoub, and Kâmil Uğurbil. Nordic increases the sensitivity and preserves the spatiotemporal precision of fmri responses. bioRxiv, pages 2021–08, 2021.

[21]

Logan T Dowdle, Luca Vizioli, Steen Moeller, Mehmet Akçakaya, Cheryl Olman, Geoffrey Ghose, Essa Yacoub, and Kâmil Uğurbil. Evaluating increases in sensitivity from nordic for diverse fmri acquisition strategies. NeuroImage, 270:119949, 2023.

[22]

Andrew N Van, David F Montez, Timothy O Laumann, Vahdeta Suljic, Thomas Madison, Noah J Baden, Nadeshka Ramirez-Perez, Kristen M Scheidter, Julia S Monk, Forrest I Whiting, and others. Framewise multi-echo distortion correction for superior functional mri. Biorxiv, 2023.

[23]

Elizabeth DuPre, Taylor Salo, Zaki Ahmed, Peter A. Bandettini, Katherine L. Bottenhorn, César Caballero-Gaudes, Logan T. Dowdle, Javier Gonzalez-Castillo, Stephan Heunis, Prantik Kundu, Angela R. Laird, Ross Markello, Christopher J. Markiewicz, Stefano Moia, Isla Staden, Joshua B. Teves, Eneko Uruñuela, Maryam Vaziri-Pashkam, Kirstie Whitaker, and Daniel A. Handwerker. Te-dependent analysis of multi-echo fmri with *tedana*. Journal of Open Source Software, 6(66):3669, 2021. URL: https://doi.org/10.21105/joss.03669, doi:10.21105/joss.03669.

[24]

Jonathan D Power, Mark Plitt, Stephen J Gotts, Prantik Kundu, Valerie Voon, Peter A Bandettini, and Alex Martin. Ridding fmri data of motion-related influences: removal of signals with distinct spatial and physical bases in multiecho data. Proceedings of the National Academy of Sciences, 115(9):E2105–E2114, 2018.