Optimal combination with t2smap
#
Use t2smap
[DuPre et al., 2021] to combine data.
import os
from glob import glob
import matplotlib.pyplot as plt
import numpy as np
from myst_nb import glue
from nilearn import image, plotting
from repo2data.repo2data import Repo2Data
from tedana import workflows
# Install the data if running locally, or point to cached data if running on neurolibre
DATA_REQ_FILE = os.path.join("../binder/data_requirement.json")
# Download data
repo2data = Repo2Data(DATA_REQ_FILE)
data_path = repo2data.install()
data_path = os.path.abspath(data_path[0])
---- repo2data starting ----
/opt/hostedtoolcache/Python/3.10.18/x64/lib/python3.10/site-packages/repo2data
Config from file :
../binder/data_requirement.json
Destination:
./../data/multi-echo-data-analysis
Info : ./../data/multi-echo-data-analysis already downloaded
/opt/hostedtoolcache/Python/3.10.18/x64/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
from .autonotebook import tqdm as notebook_tqdm
func_dir = os.path.join(data_path, "func/")
data_files = [
os.path.join(
func_dir,
"sub-04570_task-rest_echo-1_space-scanner_desc-partialPreproc_bold.nii.gz",
),
os.path.join(
func_dir,
"sub-04570_task-rest_echo-2_space-scanner_desc-partialPreproc_bold.nii.gz",
),
os.path.join(
func_dir,
"sub-04570_task-rest_echo-3_space-scanner_desc-partialPreproc_bold.nii.gz",
),
os.path.join(
func_dir,
"sub-04570_task-rest_echo-4_space-scanner_desc-partialPreproc_bold.nii.gz",
),
]
echo_times = [12.0, 28.0, 44.0, 60.0]
mask_file = os.path.join(
func_dir, "sub-04570_task-rest_space-scanner_desc-brain_mask.nii.gz"
)
confounds_file = os.path.join(
func_dir, "sub-04570_task-rest_desc-confounds_timeseries.tsv"
)
out_dir = os.path.join(data_path, "t2smap")
workflows.t2smap_workflow(
data_files,
echo_times,
out_dir=out_dir,
mask=mask_file,
prefix="sub-04570_task-rest_space-scanner",
fittype="curvefit",
)
INFO t2smap:t2smap_workflow:300 Using output directory: /home/runner/work/multi-echo-data-analysis/multi-echo-data-analysis/data/multi-echo-data-analysis/t2smap
INFO t2smap:t2smap_workflow:326 Loading input data: ['/home/runner/work/multi-echo-data-analysis/multi-echo-data-analysis/data/multi-echo-data-analysis/func/sub-04570_task-rest_echo-1_space-scanner_desc-partialPreproc_bold.nii.gz', '/home/runner/work/multi-echo-data-analysis/multi-echo-data-analysis/data/multi-echo-data-analysis/func/sub-04570_task-rest_echo-2_space-scanner_desc-partialPreproc_bold.nii.gz', '/home/runner/work/multi-echo-data-analysis/multi-echo-data-analysis/data/multi-echo-data-analysis/func/sub-04570_task-rest_echo-3_space-scanner_desc-partialPreproc_bold.nii.gz', '/home/runner/work/multi-echo-data-analysis/multi-echo-data-analysis/data/multi-echo-data-analysis/func/sub-04570_task-rest_echo-4_space-scanner_desc-partialPreproc_bold.nii.gz']
INFO t2smap:t2smap_workflow:348 Using user-defined mask
INFO utils:make_adaptive_mask:202 Echo-wise intensity thresholds for adaptive mask: [258.33994278 180.98638476 134.6796175 91.51006253]
WARNING utils:make_adaptive_mask:231 734 voxels in user-defined mask do not have good signal. Removing voxels from mask.
INFO t2smap:t2smap_workflow:357 Computing adaptive T2* map
2-echo monoexponential: 0%| | 0/2224 [00:00<?, ?it/s]
2-echo monoexponential: 3%|▎ | 63/2224 [00:00<00:03, 627.15it/s]
2-echo monoexponential: 6%|▋ | 143/2224 [00:00<00:02, 724.71it/s]
2-echo monoexponential: 10%|█ | 223/2224 [00:00<00:02, 756.59it/s]
2-echo monoexponential: 14%|█▎ | 305/2224 [00:00<00:02, 781.13it/s]
2-echo monoexponential: 17%|█▋ | 385/2224 [00:00<00:02, 785.47it/s]
2-echo monoexponential: 21%|██ | 469/2224 [00:00<00:02, 801.12it/s]
2-echo monoexponential: 25%|██▍ | 550/2224 [00:00<00:02, 793.38it/s]
2-echo monoexponential: 28%|██▊ | 630/2224 [00:00<00:02, 789.51it/s]
2-echo monoexponential: 32%|███▏ | 709/2224 [00:00<00:01, 771.14it/s]
2-echo monoexponential: 35%|███▌ | 788/2224 [00:01<00:01, 775.36it/s]
2-echo monoexponential: 39%|███▉ | 868/2224 [00:01<00:01, 781.95it/s]
2-echo monoexponential: 43%|████▎ | 948/2224 [00:01<00:01, 786.41it/s]
2-echo monoexponential: 46%|████▌ | 1028/2224 [00:01<00:01, 790.41it/s]
2-echo monoexponential: 50%|████▉ | 1108/2224 [00:01<00:01, 791.88it/s]
2-echo monoexponential: 53%|█████▎ | 1188/2224 [00:01<00:01, 787.09it/s]
2-echo monoexponential: 57%|█████▋ | 1267/2224 [00:01<00:01, 785.90it/s]
2-echo monoexponential: 61%|██████ | 1346/2224 [00:01<00:01, 785.81it/s]
2-echo monoexponential: 64%|██████▍ | 1425/2224 [00:01<00:01, 785.37it/s]
2-echo monoexponential: 68%|██████▊ | 1505/2224 [00:01<00:00, 786.99it/s]
2-echo monoexponential: 71%|███████▏ | 1589/2224 [00:02<00:00, 799.21it/s]
2-echo monoexponential: 75%|███████▌ | 1670/2224 [00:02<00:00, 799.82it/s]
2-echo monoexponential: 79%|███████▊ | 1750/2224 [00:02<00:00, 615.52it/s]
2-echo monoexponential: 82%|████████▏ | 1830/2224 [00:02<00:00, 660.82it/s]
2-echo monoexponential: 86%|████████▌ | 1913/2224 [00:02<00:00, 703.32it/s]
2-echo monoexponential: 89%|████████▉ | 1988/2224 [00:02<00:00, 678.12it/s]
2-echo monoexponential: 93%|█████████▎| 2067/2224 [00:02<00:00, 707.21it/s]
2-echo monoexponential: 96%|█████████▋| 2144/2224 [00:02<00:00, 721.40it/s]
2-echo monoexponential: 100%|█████████▉| 2219/2224 [00:02<00:00, 716.33it/s]
2-echo monoexponential: 100%|██████████| 2224/2224 [00:02<00:00, 749.28it/s]
3-echo monoexponential: 0%| | 0/1092 [00:00<?, ?it/s]
3-echo monoexponential: 4%|▍ | 49/1092 [00:00<00:02, 488.75it/s]
3-echo monoexponential: 9%|▉ | 100/1092 [00:00<00:01, 500.80it/s]
3-echo monoexponential: 14%|█▍ | 154/1092 [00:00<00:01, 515.63it/s]
3-echo monoexponential: 19%|█▉ | 206/1092 [00:00<00:01, 515.87it/s]
3-echo monoexponential: 24%|██▎ | 259/1092 [00:00<00:01, 518.03it/s]
3-echo monoexponential: 28%|██▊ | 311/1092 [00:00<00:01, 514.33it/s]
3-echo monoexponential: 33%|███▎ | 363/1092 [00:00<00:01, 512.20it/s]
3-echo monoexponential: 38%|███▊ | 415/1092 [00:00<00:01, 504.25it/s]
3-echo monoexponential: 43%|████▎ | 467/1092 [00:00<00:01, 507.71it/s]
3-echo monoexponential: 48%|████▊ | 520/1092 [00:01<00:01, 511.72it/s]
3-echo monoexponential: 52%|█████▏ | 572/1092 [00:01<00:01, 505.10it/s]
3-echo monoexponential: 57%|█████▋ | 625/1092 [00:01<00:00, 509.48it/s]
3-echo monoexponential: 62%|██████▏ | 678/1092 [00:01<00:00, 512.94it/s]
3-echo monoexponential: 67%|██████▋ | 730/1092 [00:01<00:00, 504.83it/s]
3-echo monoexponential: 72%|███████▏ | 781/1092 [00:01<00:00, 502.03it/s]
3-echo monoexponential: 76%|███████▋ | 833/1092 [00:01<00:00, 504.35it/s]
3-echo monoexponential: 81%|████████ | 885/1092 [00:01<00:00, 505.41it/s]
3-echo monoexponential: 86%|████████▌ | 938/1092 [00:01<00:00, 511.89it/s]
3-echo monoexponential: 91%|█████████ | 990/1092 [00:01<00:00, 509.89it/s]
3-echo monoexponential: 95%|█████████▌| 1042/1092 [00:02<00:00, 511.96it/s]
3-echo monoexponential: 100%|██████████| 1092/1092 [00:02<00:00, 509.58it/s]
4-echo monoexponential: 0%| | 0/20176 [00:00<?, ?it/s]
4-echo monoexponential: 0%| | 52/20176 [00:00<00:39, 510.32it/s]
4-echo monoexponential: 1%| | 107/20176 [00:00<00:38, 527.85it/s]
4-echo monoexponential: 1%| | 165/20176 [00:00<00:36, 551.00it/s]
4-echo monoexponential: 1%| | 225/20176 [00:00<00:35, 568.30it/s]
4-echo monoexponential: 1%|▏ | 282/20176 [00:00<00:35, 564.75it/s]
4-echo monoexponential: 2%|▏ | 343/20176 [00:00<00:34, 577.85it/s]
4-echo monoexponential: 2%|▏ | 403/20176 [00:00<00:33, 583.13it/s]
4-echo monoexponential: 2%|▏ | 462/20176 [00:00<00:34, 576.35it/s]
4-echo monoexponential: 3%|▎ | 522/20176 [00:00<00:33, 581.72it/s]
4-echo monoexponential: 3%|▎ | 581/20176 [00:01<00:33, 577.74it/s]
4-echo monoexponential: 3%|▎ | 639/20176 [00:01<00:34, 570.50it/s]
4-echo monoexponential: 3%|▎ | 697/20176 [00:01<00:34, 572.39it/s]
4-echo monoexponential: 4%|▎ | 755/20176 [00:01<00:33, 573.17it/s]
4-echo monoexponential: 4%|▍ | 814/20176 [00:01<00:33, 576.41it/s]
4-echo monoexponential: 4%|▍ | 872/20176 [00:01<00:33, 574.92it/s]
4-echo monoexponential: 5%|▍ | 933/20176 [00:01<00:32, 584.18it/s]
4-echo monoexponential: 5%|▍ | 992/20176 [00:01<00:34, 561.55it/s]
4-echo monoexponential: 5%|▌ | 1049/20176 [00:01<00:34, 555.01it/s]
4-echo monoexponential: 5%|▌ | 1108/20176 [00:01<00:33, 562.30it/s]
4-echo monoexponential: 6%|▌ | 1166/20176 [00:02<00:33, 567.39it/s]
4-echo monoexponential: 6%|▌ | 1225/20176 [00:02<00:33, 572.37it/s]
4-echo monoexponential: 6%|▋ | 1287/20176 [00:02<00:32, 585.11it/s]
4-echo monoexponential: 7%|▋ | 1349/20176 [00:02<00:31, 592.94it/s]
4-echo monoexponential: 7%|▋ | 1410/20176 [00:02<00:31, 596.58it/s]
4-echo monoexponential: 7%|▋ | 1470/20176 [00:02<00:32, 573.63it/s]
4-echo monoexponential: 8%|▊ | 1528/20176 [00:02<00:32, 574.80it/s]
4-echo monoexponential: 8%|▊ | 1588/20176 [00:02<00:32, 579.65it/s]
4-echo monoexponential: 8%|▊ | 1649/20176 [00:02<00:31, 586.86it/s]
4-echo monoexponential: 8%|▊ | 1712/20176 [00:02<00:30, 599.02it/s]
4-echo monoexponential: 9%|▉ | 1772/20176 [00:03<00:30, 598.19it/s]
4-echo monoexponential: 9%|▉ | 1833/20176 [00:03<00:30, 600.98it/s]
4-echo monoexponential: 9%|▉ | 1895/20176 [00:03<00:30, 604.17it/s]
4-echo monoexponential: 10%|▉ | 1956/20176 [00:03<00:30, 599.10it/s]
4-echo monoexponential: 10%|▉ | 2016/20176 [00:03<00:31, 572.83it/s]
4-echo monoexponential: 10%|█ | 2078/20176 [00:03<00:30, 583.95it/s]
4-echo monoexponential: 11%|█ | 2139/20176 [00:03<00:30, 588.63it/s]
4-echo monoexponential: 11%|█ | 2201/20176 [00:03<00:30, 596.89it/s]
4-echo monoexponential: 11%|█ | 2263/20176 [00:03<00:29, 603.58it/s]
4-echo monoexponential: 12%|█▏ | 2326/20176 [00:03<00:29, 610.85it/s]
4-echo monoexponential: 12%|█▏ | 2388/20176 [00:04<00:29, 611.74it/s]
4-echo monoexponential: 12%|█▏ | 2452/20176 [00:04<00:28, 617.20it/s]
4-echo monoexponential: 12%|█▏ | 2515/20176 [00:04<00:28, 619.19it/s]
4-echo monoexponential: 13%|█▎ | 2577/20176 [00:04<00:29, 592.12it/s]
4-echo monoexponential: 13%|█▎ | 2637/20176 [00:04<00:29, 590.28it/s]
4-echo monoexponential: 13%|█▎ | 2697/20176 [00:04<00:29, 587.71it/s]
4-echo monoexponential: 14%|█▎ | 2758/20176 [00:04<00:29, 591.34it/s]
4-echo monoexponential: 14%|█▍ | 2820/20176 [00:04<00:29, 598.16it/s]
4-echo monoexponential: 14%|█▍ | 2884/20176 [00:04<00:28, 607.60it/s]
4-echo monoexponential: 15%|█▍ | 2946/20176 [00:05<00:28, 610.64it/s]
4-echo monoexponential: 15%|█▍ | 3009/20176 [00:05<00:27, 613.86it/s]
4-echo monoexponential: 15%|█▌ | 3073/20176 [00:05<00:27, 619.64it/s]
4-echo monoexponential: 16%|█▌ | 3136/20176 [00:05<00:27, 622.33it/s]
4-echo monoexponential: 16%|█▌ | 3199/20176 [00:05<00:27, 613.90it/s]
4-echo monoexponential: 16%|█▌ | 3261/20176 [00:05<00:28, 596.55it/s]
4-echo monoexponential: 16%|█▋ | 3323/20176 [00:05<00:28, 600.67it/s]
4-echo monoexponential: 17%|█▋ | 3384/20176 [00:05<00:27, 601.50it/s]
4-echo monoexponential: 17%|█▋ | 3445/20176 [00:05<00:27, 601.18it/s]
4-echo monoexponential: 17%|█▋ | 3509/20176 [00:05<00:27, 610.85it/s]
4-echo monoexponential: 18%|█▊ | 3574/20176 [00:06<00:26, 619.46it/s]
4-echo monoexponential: 18%|█▊ | 3636/20176 [00:06<00:26, 614.56it/s]
4-echo monoexponential: 18%|█▊ | 3698/20176 [00:06<00:26, 615.99it/s]
4-echo monoexponential: 19%|█▊ | 3761/20176 [00:06<00:26, 618.35it/s]
4-echo monoexponential: 19%|█▉ | 3823/20176 [00:06<00:26, 615.02it/s]
4-echo monoexponential: 19%|█▉ | 3885/20176 [00:06<00:26, 608.66it/s]
4-echo monoexponential: 20%|█▉ | 3946/20176 [00:06<00:27, 587.73it/s]
4-echo monoexponential: 20%|█▉ | 4005/20176 [00:06<00:27, 587.07it/s]
4-echo monoexponential: 20%|██ | 4068/20176 [00:06<00:26, 596.66it/s]
4-echo monoexponential: 20%|██ | 4128/20176 [00:06<00:27, 590.58it/s]
4-echo monoexponential: 21%|██ | 4189/20176 [00:07<00:26, 594.61it/s]
4-echo monoexponential: 21%|██ | 4251/20176 [00:07<00:26, 600.65it/s]
4-echo monoexponential: 21%|██▏ | 4316/20176 [00:07<00:25, 612.16it/s]
4-echo monoexponential: 22%|██▏ | 4378/20176 [00:07<00:26, 607.57it/s]
4-echo monoexponential: 22%|██▏ | 4440/20176 [00:07<00:25, 610.58it/s]
4-echo monoexponential: 22%|██▏ | 4502/20176 [00:07<00:25, 607.30it/s]
4-echo monoexponential: 23%|██▎ | 4564/20176 [00:07<00:25, 609.59it/s]
4-echo monoexponential: 23%|██▎ | 4625/20176 [00:07<00:25, 609.58it/s]
4-echo monoexponential: 23%|██▎ | 4686/20176 [00:07<00:26, 590.73it/s]
4-echo monoexponential: 24%|██▎ | 4749/20176 [00:08<00:25, 601.18it/s]
4-echo monoexponential: 24%|██▍ | 4810/20176 [00:08<00:25, 603.14it/s]
4-echo monoexponential: 24%|██▍ | 4871/20176 [00:08<00:25, 600.71it/s]
4-echo monoexponential: 24%|██▍ | 4932/20176 [00:08<00:25, 599.19it/s]
4-echo monoexponential: 25%|██▍ | 4995/20176 [00:08<00:25, 606.44it/s]
4-echo monoexponential: 25%|██▌ | 5060/20176 [00:08<00:24, 617.14it/s]
4-echo monoexponential: 25%|██▌ | 5124/20176 [00:08<00:24, 623.81it/s]
4-echo monoexponential: 26%|██▌ | 5188/20176 [00:08<00:23, 625.66it/s]
4-echo monoexponential: 26%|██▌ | 5251/20176 [00:08<00:24, 619.36it/s]
4-echo monoexponential: 26%|██▋ | 5313/20176 [00:08<00:24, 610.06it/s]
4-echo monoexponential: 27%|██▋ | 5375/20176 [00:09<00:24, 608.98it/s]
4-echo monoexponential: 27%|██▋ | 5436/20176 [00:09<00:25, 589.14it/s]
4-echo monoexponential: 27%|██▋ | 5497/20176 [00:09<00:24, 594.04it/s]
4-echo monoexponential: 28%|██▊ | 5557/20176 [00:09<00:24, 593.52it/s]
4-echo monoexponential: 28%|██▊ | 5617/20176 [00:09<00:24, 592.92it/s]
4-echo monoexponential: 28%|██▊ | 5679/20176 [00:09<00:24, 599.84it/s]
4-echo monoexponential: 28%|██▊ | 5745/20176 [00:09<00:23, 615.06it/s]
4-echo monoexponential: 29%|██▉ | 5810/20176 [00:09<00:23, 622.67it/s]
4-echo monoexponential: 29%|██▉ | 5873/20176 [00:09<00:22, 622.45it/s]
4-echo monoexponential: 29%|██▉ | 5936/20176 [00:09<00:23, 618.92it/s]
4-echo monoexponential: 30%|██▉ | 5998/20176 [00:10<00:23, 611.08it/s]
4-echo monoexponential: 30%|███ | 6060/20176 [00:10<00:23, 610.33it/s]
4-echo monoexponential: 30%|███ | 6123/20176 [00:10<00:22, 613.71it/s]
4-echo monoexponential: 31%|███ | 6185/20176 [00:10<00:23, 602.64it/s]
4-echo monoexponential: 31%|███ | 6246/20176 [00:10<00:23, 582.24it/s]
4-echo monoexponential: 31%|███▏ | 6306/20176 [00:10<00:23, 583.84it/s]
4-echo monoexponential: 32%|███▏ | 6365/20176 [00:10<00:23, 580.65it/s]
4-echo monoexponential: 32%|███▏ | 6426/20176 [00:10<00:23, 587.55it/s]
4-echo monoexponential: 32%|███▏ | 6489/20176 [00:10<00:22, 599.19it/s]
4-echo monoexponential: 32%|███▏ | 6553/20176 [00:10<00:22, 608.62it/s]
4-echo monoexponential: 33%|███▎ | 6617/20176 [00:11<00:21, 617.40it/s]
4-echo monoexponential: 33%|███▎ | 6679/20176 [00:11<00:21, 615.42it/s]
4-echo monoexponential: 33%|███▎ | 6741/20176 [00:11<00:21, 615.64it/s]
4-echo monoexponential: 34%|███▎ | 6805/20176 [00:11<00:21, 619.93it/s]
4-echo monoexponential: 34%|███▍ | 6868/20176 [00:11<00:21, 615.72it/s]
4-echo monoexponential: 34%|███▍ | 6930/20176 [00:11<00:21, 605.47it/s]
4-echo monoexponential: 35%|███▍ | 6991/20176 [00:11<00:22, 583.64it/s]
4-echo monoexponential: 35%|███▍ | 7051/20176 [00:11<00:22, 587.76it/s]
4-echo monoexponential: 35%|███▌ | 7113/20176 [00:11<00:21, 593.78it/s]
4-echo monoexponential: 36%|███▌ | 7175/20176 [00:12<00:21, 599.13it/s]
4-echo monoexponential: 36%|███▌ | 7235/20176 [00:12<00:21, 598.58it/s]
4-echo monoexponential: 36%|███▌ | 7300/20176 [00:12<00:21, 612.15it/s]
4-echo monoexponential: 36%|███▋ | 7364/20176 [00:12<00:20, 619.12it/s]
4-echo monoexponential: 37%|███▋ | 7426/20176 [00:12<00:20, 616.43it/s]
4-echo monoexponential: 37%|███▋ | 7488/20176 [00:12<00:20, 609.54it/s]
4-echo monoexponential: 37%|███▋ | 7551/20176 [00:12<00:20, 614.16it/s]
4-echo monoexponential: 38%|███▊ | 7614/20176 [00:12<00:20, 616.97it/s]
4-echo monoexponential: 38%|███▊ | 7676/20176 [00:12<00:20, 617.13it/s]
4-echo monoexponential: 38%|███▊ | 7738/20176 [00:12<00:20, 602.63it/s]
4-echo monoexponential: 39%|███▊ | 7799/20176 [00:13<00:20, 593.37it/s]
4-echo monoexponential: 39%|███▉ | 7859/20176 [00:13<00:20, 593.21it/s]
4-echo monoexponential: 39%|███▉ | 7919/20176 [00:13<00:20, 591.17it/s]
4-echo monoexponential: 40%|███▉ | 7979/20176 [00:13<00:20, 589.47it/s]
4-echo monoexponential: 40%|███▉ | 8042/20176 [00:13<00:20, 600.86it/s]
4-echo monoexponential: 40%|████ | 8103/20176 [00:13<00:20, 600.92it/s]
4-echo monoexponential: 40%|████ | 8167/20176 [00:13<00:19, 610.94it/s]
4-echo monoexponential: 41%|████ | 8229/20176 [00:13<00:19, 613.17it/s]
4-echo monoexponential: 41%|████ | 8292/20176 [00:13<00:19, 617.62it/s]
4-echo monoexponential: 41%|████▏ | 8355/20176 [00:13<00:19, 621.16it/s]
4-echo monoexponential: 42%|████▏ | 8418/20176 [00:14<00:19, 615.18it/s]
4-echo monoexponential: 42%|████▏ | 8481/20176 [00:14<00:18, 619.55it/s]
4-echo monoexponential: 42%|████▏ | 8543/20176 [00:14<00:19, 611.51it/s]
4-echo monoexponential: 43%|████▎ | 8605/20176 [00:14<00:19, 593.32it/s]
4-echo monoexponential: 43%|████▎ | 8665/20176 [00:14<00:19, 591.83it/s]
4-echo monoexponential: 43%|████▎ | 8725/20176 [00:14<00:19, 588.60it/s]
4-echo monoexponential: 44%|████▎ | 8787/20176 [00:14<00:19, 597.50it/s]
4-echo monoexponential: 44%|████▍ | 8849/20176 [00:14<00:18, 603.34it/s]
4-echo monoexponential: 44%|████▍ | 8910/20176 [00:14<00:18, 602.08it/s]
4-echo monoexponential: 44%|████▍ | 8971/20176 [00:14<00:18, 603.06it/s]
4-echo monoexponential: 45%|████▍ | 9033/20176 [00:15<00:18, 605.89it/s]
4-echo monoexponential: 45%|████▌ | 9095/20176 [00:15<00:18, 608.66it/s]
4-echo monoexponential: 45%|████▌ | 9160/20176 [00:15<00:17, 617.86it/s]
4-echo monoexponential: 46%|████▌ | 9223/20176 [00:15<00:17, 620.56it/s]
4-echo monoexponential: 46%|████▌ | 9286/20176 [00:15<00:17, 622.45it/s]
4-echo monoexponential: 46%|████▋ | 9349/20176 [00:15<00:17, 619.73it/s]
4-echo monoexponential: 47%|████▋ | 9411/20176 [00:15<00:17, 605.91it/s]
4-echo monoexponential: 47%|████▋ | 9472/20176 [00:15<00:17, 595.48it/s]
4-echo monoexponential: 47%|████▋ | 9532/20176 [00:15<00:17, 592.81it/s]
4-echo monoexponential: 48%|████▊ | 9594/20176 [00:16<00:17, 600.01it/s]
4-echo monoexponential: 48%|████▊ | 9655/20176 [00:16<00:17, 594.45it/s]
4-echo monoexponential: 48%|████▊ | 9718/20176 [00:16<00:17, 604.71it/s]
4-echo monoexponential: 48%|████▊ | 9779/20176 [00:16<00:17, 605.50it/s]
4-echo monoexponential: 49%|████▉ | 9840/20176 [00:16<00:17, 601.01it/s]
4-echo monoexponential: 49%|████▉ | 9904/20176 [00:16<00:16, 610.64it/s]
4-echo monoexponential: 49%|████▉ | 9969/20176 [00:16<00:16, 621.95it/s]
4-echo monoexponential: 50%|████▉ | 10033/20176 [00:16<00:16, 627.25it/s]
4-echo monoexponential: 50%|█████ | 10096/20176 [00:16<00:16, 614.60it/s]
4-echo monoexponential: 50%|█████ | 10158/20176 [00:16<00:16, 613.18it/s]
4-echo monoexponential: 51%|█████ | 10220/20176 [00:17<00:16, 592.11it/s]
4-echo monoexponential: 51%|█████ | 10280/20176 [00:17<00:16, 591.90it/s]
4-echo monoexponential: 51%|█████ | 10340/20176 [00:17<00:16, 594.19it/s]
4-echo monoexponential: 52%|█████▏ | 10401/20176 [00:17<00:16, 595.56it/s]
4-echo monoexponential: 52%|█████▏ | 10463/20176 [00:17<00:16, 600.59it/s]
4-echo monoexponential: 52%|█████▏ | 10526/20176 [00:17<00:15, 608.38it/s]
4-echo monoexponential: 52%|█████▏ | 10591/20176 [00:17<00:15, 618.51it/s]
4-echo monoexponential: 53%|█████▎ | 10653/20176 [00:17<00:15, 602.13it/s]
4-echo monoexponential: 53%|█████▎ | 10717/20176 [00:17<00:15, 611.14it/s]
4-echo monoexponential: 53%|█████▎ | 10782/20176 [00:17<00:15, 621.15it/s]
4-echo monoexponential: 54%|█████▍ | 10846/20176 [00:18<00:14, 625.16it/s]
4-echo monoexponential: 54%|█████▍ | 10909/20176 [00:18<00:15, 617.46it/s]
4-echo monoexponential: 54%|█████▍ | 10971/20176 [00:18<00:15, 596.27it/s]
4-echo monoexponential: 55%|█████▍ | 11031/20176 [00:18<00:15, 584.77it/s]
4-echo monoexponential: 55%|█████▍ | 11090/20176 [00:18<00:16, 563.37it/s]
4-echo monoexponential: 55%|█████▌ | 11147/20176 [00:18<00:16, 563.59it/s]
4-echo monoexponential: 56%|█████▌ | 11209/20176 [00:18<00:15, 578.74it/s]
4-echo monoexponential: 56%|█████▌ | 11275/20176 [00:18<00:14, 599.29it/s]
4-echo monoexponential: 56%|█████▌ | 11336/20176 [00:18<00:14, 598.82it/s]
4-echo monoexponential: 56%|█████▋ | 11399/20176 [00:19<00:14, 605.45it/s]
4-echo monoexponential: 57%|█████▋ | 11463/20176 [00:19<00:14, 613.62it/s]
4-echo monoexponential: 57%|█████▋ | 11526/20176 [00:19<00:14, 617.34it/s]
4-echo monoexponential: 57%|█████▋ | 11591/20176 [00:19<00:13, 624.49it/s]
4-echo monoexponential: 58%|█████▊ | 11654/20176 [00:19<00:13, 622.74it/s]
4-echo monoexponential: 58%|█████▊ | 11717/20176 [00:19<00:13, 619.34it/s]
4-echo monoexponential: 58%|█████▊ | 11779/20176 [00:19<00:14, 560.27it/s]
4-echo monoexponential: 59%|█████▊ | 11840/20176 [00:19<00:14, 572.03it/s]
4-echo monoexponential: 59%|█████▉ | 11900/20176 [00:19<00:14, 578.12it/s]
4-echo monoexponential: 59%|█████▉ | 11962/20176 [00:19<00:13, 589.60it/s]
4-echo monoexponential: 60%|█████▉ | 12023/20176 [00:20<00:13, 593.38it/s]
4-echo monoexponential: 60%|█████▉ | 12085/20176 [00:20<00:13, 599.43it/s]
4-echo monoexponential: 60%|██████ | 12149/20176 [00:20<00:13, 609.57it/s]
4-echo monoexponential: 61%|██████ | 12212/20176 [00:20<00:12, 615.30it/s]
4-echo monoexponential: 61%|██████ | 12277/20176 [00:20<00:12, 624.83it/s]
4-echo monoexponential: 61%|██████ | 12342/20176 [00:20<00:12, 629.51it/s]
4-echo monoexponential: 61%|██████▏ | 12406/20176 [00:20<00:12, 627.91it/s]
4-echo monoexponential: 62%|██████▏ | 12469/20176 [00:20<00:12, 627.13it/s]
4-echo monoexponential: 62%|██████▏ | 12532/20176 [00:20<00:12, 615.84it/s]
4-echo monoexponential: 62%|██████▏ | 12594/20176 [00:20<00:13, 581.11it/s]
4-echo monoexponential: 63%|██████▎ | 12655/20176 [00:21<00:12, 587.60it/s]
4-echo monoexponential: 63%|██████▎ | 12718/20176 [00:21<00:12, 596.72it/s]
4-echo monoexponential: 63%|██████▎ | 12780/20176 [00:21<00:12, 603.19it/s]
4-echo monoexponential: 64%|██████▎ | 12845/20176 [00:21<00:11, 612.84it/s]
4-echo monoexponential: 64%|██████▍ | 12910/20176 [00:21<00:11, 621.31it/s]
4-echo monoexponential: 64%|██████▍ | 12973/20176 [00:21<00:11, 623.07it/s]
4-echo monoexponential: 65%|██████▍ | 13037/20176 [00:21<00:11, 625.10it/s]
4-echo monoexponential: 65%|██████▍ | 13100/20176 [00:21<00:11, 622.28it/s]
4-echo monoexponential: 65%|██████▌ | 13163/20176 [00:21<00:11, 617.83it/s]
4-echo monoexponential: 66%|██████▌ | 13226/20176 [00:22<00:11, 619.22it/s]
4-echo monoexponential: 66%|██████▌ | 13288/20176 [00:22<00:11, 612.94it/s]
4-echo monoexponential: 66%|██████▌ | 13350/20176 [00:22<00:11, 590.38it/s]
4-echo monoexponential: 66%|██████▋ | 13410/20176 [00:22<00:11, 589.02it/s]
4-echo monoexponential: 67%|██████▋ | 13471/20176 [00:22<00:11, 591.71it/s]
4-echo monoexponential: 67%|██████▋ | 13531/20176 [00:22<00:11, 593.28it/s]
4-echo monoexponential: 67%|██████▋ | 13595/20176 [00:22<00:10, 606.67it/s]
4-echo monoexponential: 68%|██████▊ | 13659/20176 [00:22<00:10, 616.19it/s]
4-echo monoexponential: 68%|██████▊ | 13724/20176 [00:22<00:10, 623.69it/s]
4-echo monoexponential: 68%|██████▊ | 13787/20176 [00:22<00:10, 624.47it/s]
4-echo monoexponential: 69%|██████▊ | 13851/20176 [00:23<00:10, 626.18it/s]
4-echo monoexponential: 69%|██████▉ | 13914/20176 [00:23<00:10, 624.43it/s]
4-echo monoexponential: 69%|██████▉ | 13977/20176 [00:23<00:09, 625.95it/s]
4-echo monoexponential: 70%|██████▉ | 14040/20176 [00:23<00:09, 624.25it/s]
4-echo monoexponential: 70%|██████▉ | 14103/20176 [00:23<00:09, 615.59it/s]
4-echo monoexponential: 70%|███████ | 14165/20176 [00:23<00:10, 591.44it/s]
4-echo monoexponential: 71%|███████ | 14225/20176 [00:23<00:10, 586.55it/s]
4-echo monoexponential: 71%|███████ | 14288/20176 [00:23<00:09, 598.33it/s]
4-echo monoexponential: 71%|███████ | 14349/20176 [00:23<00:09, 601.45it/s]
4-echo monoexponential: 71%|███████▏ | 14414/20176 [00:23<00:09, 615.33it/s]
4-echo monoexponential: 72%|███████▏ | 14481/20176 [00:24<00:09, 629.65it/s]
4-echo monoexponential: 72%|███████▏ | 14546/20176 [00:24<00:08, 633.93it/s]
4-echo monoexponential: 72%|███████▏ | 14611/20176 [00:24<00:08, 635.76it/s]
4-echo monoexponential: 73%|███████▎ | 14675/20176 [00:24<00:08, 623.87it/s]
4-echo monoexponential: 73%|███████▎ | 14738/20176 [00:24<00:08, 616.66it/s]
4-echo monoexponential: 73%|███████▎ | 14800/20176 [00:24<00:08, 617.22it/s]
4-echo monoexponential: 74%|███████▎ | 14862/20176 [00:24<00:08, 595.97it/s]
4-echo monoexponential: 74%|███████▍ | 14923/20176 [00:24<00:08, 599.60it/s]
4-echo monoexponential: 74%|███████▍ | 14984/20176 [00:24<00:08, 600.22it/s]
4-echo monoexponential: 75%|███████▍ | 15046/20176 [00:24<00:08, 603.58it/s]
4-echo monoexponential: 75%|███████▍ | 15109/20176 [00:25<00:08, 609.06it/s]
4-echo monoexponential: 75%|███████▌ | 15173/20176 [00:25<00:08, 618.17it/s]
4-echo monoexponential: 76%|███████▌ | 15235/20176 [00:25<00:08, 614.43it/s]
4-echo monoexponential: 76%|███████▌ | 15298/20176 [00:25<00:07, 617.87it/s]
4-echo monoexponential: 76%|███████▌ | 15363/20176 [00:25<00:07, 624.45it/s]
4-echo monoexponential: 76%|███████▋ | 15426/20176 [00:25<00:07, 614.31it/s]
4-echo monoexponential: 77%|███████▋ | 15489/20176 [00:25<00:07, 617.03it/s]
4-echo monoexponential: 77%|███████▋ | 15551/20176 [00:25<00:07, 608.79it/s]
4-echo monoexponential: 77%|███████▋ | 15612/20176 [00:25<00:07, 589.53it/s]
4-echo monoexponential: 78%|███████▊ | 15674/20176 [00:26<00:07, 597.47it/s]
4-echo monoexponential: 78%|███████▊ | 15737/20176 [00:26<00:07, 605.09it/s]
4-echo monoexponential: 78%|███████▊ | 15798/20176 [00:26<00:07, 590.74it/s]
4-echo monoexponential: 79%|███████▊ | 15859/20176 [00:26<00:07, 594.40it/s]
4-echo monoexponential: 79%|███████▉ | 15923/20176 [00:26<00:07, 606.75it/s]
4-echo monoexponential: 79%|███████▉ | 15987/20176 [00:26<00:06, 616.42it/s]
4-echo monoexponential: 80%|███████▉ | 16051/20176 [00:26<00:06, 623.13it/s]
4-echo monoexponential: 80%|███████▉ | 16114/20176 [00:26<00:06, 624.68it/s]
4-echo monoexponential: 80%|████████ | 16177/20176 [00:26<00:06, 614.12it/s]
4-echo monoexponential: 80%|████████ | 16239/20176 [00:26<00:06, 615.01it/s]
4-echo monoexponential: 81%|████████ | 16301/20176 [00:27<00:06, 599.68it/s]
4-echo monoexponential: 81%|████████ | 16362/20176 [00:27<00:06, 588.64it/s]
4-echo monoexponential: 81%|████████▏ | 16423/20176 [00:27<00:06, 593.02it/s]
4-echo monoexponential: 82%|████████▏ | 16483/20176 [00:27<00:06, 586.12it/s]
4-echo monoexponential: 82%|████████▏ | 16543/20176 [00:27<00:06, 589.79it/s]
4-echo monoexponential: 82%|████████▏ | 16605/20176 [00:27<00:05, 597.78it/s]
4-echo monoexponential: 83%|████████▎ | 16668/20176 [00:27<00:05, 605.55it/s]
4-echo monoexponential: 83%|████████▎ | 16735/20176 [00:27<00:05, 622.64it/s]
4-echo monoexponential: 83%|████████▎ | 16798/20176 [00:27<00:05, 623.44it/s]
4-echo monoexponential: 84%|████████▎ | 16861/20176 [00:27<00:05, 619.83it/s]
4-echo monoexponential: 84%|████████▍ | 16924/20176 [00:28<00:05, 614.21it/s]
4-echo monoexponential: 84%|████████▍ | 16986/20176 [00:28<00:05, 602.82it/s]
4-echo monoexponential: 84%|████████▍ | 17047/20176 [00:28<00:05, 580.74it/s]
4-echo monoexponential: 85%|████████▍ | 17109/20176 [00:28<00:05, 591.34it/s]
4-echo monoexponential: 85%|████████▌ | 17169/20176 [00:28<00:05, 584.28it/s]
4-echo monoexponential: 85%|████████▌ | 17228/20176 [00:28<00:05, 585.49it/s]
4-echo monoexponential: 86%|████████▌ | 17288/20176 [00:28<00:04, 589.33it/s]
4-echo monoexponential: 86%|████████▌ | 17349/20176 [00:28<00:04, 594.32it/s]
4-echo monoexponential: 86%|████████▋ | 17414/20176 [00:28<00:04, 610.15it/s]
4-echo monoexponential: 87%|████████▋ | 17476/20176 [00:29<00:04, 607.08it/s]
4-echo monoexponential: 87%|████████▋ | 17537/20176 [00:29<00:04, 605.56it/s]
4-echo monoexponential: 87%|████████▋ | 17598/20176 [00:29<00:04, 604.47it/s]
4-echo monoexponential: 88%|████████▊ | 17659/20176 [00:29<00:04, 575.32it/s]
4-echo monoexponential: 88%|████████▊ | 17720/20176 [00:29<00:04, 583.64it/s]
4-echo monoexponential: 88%|████████▊ | 17779/20176 [00:29<00:04, 575.01it/s]
4-echo monoexponential: 88%|████████▊ | 17840/20176 [00:29<00:04, 583.12it/s]
4-echo monoexponential: 89%|████████▊ | 17899/20176 [00:29<00:03, 583.30it/s]
4-echo monoexponential: 89%|████████▉ | 17963/20176 [00:29<00:03, 598.75it/s]
4-echo monoexponential: 89%|████████▉ | 18029/20176 [00:29<00:03, 616.76it/s]
4-echo monoexponential: 90%|████████▉ | 18091/20176 [00:30<00:03, 613.95it/s]
4-echo monoexponential: 90%|████████▉ | 18153/20176 [00:30<00:03, 608.13it/s]
4-echo monoexponential: 90%|█████████ | 18214/20176 [00:30<00:03, 592.95it/s]
4-echo monoexponential: 91%|█████████ | 18274/20176 [00:30<00:03, 576.52it/s]
4-echo monoexponential: 91%|█████████ | 18333/20176 [00:30<00:03, 578.72it/s]
4-echo monoexponential: 91%|█████████ | 18391/20176 [00:30<00:03, 568.74it/s]
4-echo monoexponential: 91%|█████████▏| 18452/20176 [00:30<00:02, 579.78it/s]
4-echo monoexponential: 92%|█████████▏| 18511/20176 [00:30<00:02, 581.05it/s]
4-echo monoexponential: 92%|█████████▏| 18572/20176 [00:30<00:02, 589.29it/s]
4-echo monoexponential: 92%|█████████▏| 18635/20176 [00:30<00:02, 599.57it/s]
4-echo monoexponential: 93%|█████████▎| 18696/20176 [00:31<00:02, 590.68it/s]
4-echo monoexponential: 93%|█████████▎| 18756/20176 [00:31<00:02, 573.38it/s]
4-echo monoexponential: 93%|█████████▎| 18816/20176 [00:31<00:02, 580.25it/s]
4-echo monoexponential: 94%|█████████▎| 18875/20176 [00:31<00:02, 575.93it/s]
4-echo monoexponential: 94%|█████████▍| 18935/20176 [00:31<00:02, 581.21it/s]
4-echo monoexponential: 94%|█████████▍| 18997/20176 [00:31<00:01, 592.50it/s]
4-echo monoexponential: 94%|█████████▍| 19062/20176 [00:31<00:01, 608.94it/s]
4-echo monoexponential: 95%|█████████▍| 19124/20176 [00:31<00:01, 610.99it/s]
4-echo monoexponential: 95%|█████████▌| 19186/20176 [00:31<00:01, 589.46it/s]
4-echo monoexponential: 95%|█████████▌| 19246/20176 [00:32<00:01, 581.92it/s]
4-echo monoexponential: 96%|█████████▌| 19305/20176 [00:32<00:01, 577.14it/s]
4-echo monoexponential: 96%|█████████▌| 19363/20176 [00:32<00:01, 565.49it/s]
4-echo monoexponential: 96%|█████████▋| 19422/20176 [00:32<00:01, 570.19it/s]
4-echo monoexponential: 97%|█████████▋| 19483/20176 [00:32<00:01, 581.22it/s]
4-echo monoexponential: 97%|█████████▋| 19542/20176 [00:32<00:01, 583.69it/s]
4-echo monoexponential: 97%|█████████▋| 19602/20176 [00:32<00:00, 585.39it/s]
4-echo monoexponential: 97%|█████████▋| 19661/20176 [00:32<00:00, 584.38it/s]
4-echo monoexponential: 98%|█████████▊| 19726/20176 [00:32<00:00, 601.87it/s]
4-echo monoexponential: 98%|█████████▊| 19791/20176 [00:32<00:00, 615.54it/s]
4-echo monoexponential: 98%|█████████▊| 19853/20176 [00:33<00:00, 601.67it/s]
4-echo monoexponential: 99%|█████████▊| 19914/20176 [00:33<00:00, 584.37it/s]
4-echo monoexponential: 99%|█████████▉| 19973/20176 [00:33<00:00, 581.68it/s]
4-echo monoexponential: 99%|█████████▉| 20032/20176 [00:33<00:00, 579.19it/s]
4-echo monoexponential: 100%|█████████▉| 20090/20176 [00:33<00:00, 576.43it/s]
4-echo monoexponential: 100%|█████████▉| 20148/20176 [00:33<00:00, 573.39it/s]
4-echo monoexponential: 100%|██████████| 20176/20176 [00:33<00:00, 600.16it/s]
INFO t2smap:t2smap_workflow:370 Calculating model fit quality metrics
/opt/hostedtoolcache/Python/3.10.18/x64/lib/python3.10/site-packages/tedana/decay.py:541: RuntimeWarning: Mean of empty slice
rmse_map = np.nanmean(rmse, axis=1)
INFO t2smap:t2smap_workflow:382 Computing optimal combination
INFO combine:make_optcom:192 Optimally combining data with voxel-wise T2* estimates
INFO t2smap:t2smap_workflow:440 Workflow completed
INFO utils:log_newsletter_info:705 Don't forget to subscribe to the tedana newsletter for updates! This is a very low volume email list.
INFO utils:log_newsletter_info:709 https://groups.google.com/g/tedana-newsletter
out_files = sorted(glob(os.path.join(out_dir, "*")))
out_files = [os.path.basename(f) for f in out_files]
print("\n".join(out_files))
sub-04570_task-rest_space-scanner_S0map.nii.gz
sub-04570_task-rest_space-scanner_T2starmap.nii.gz
sub-04570_task-rest_space-scanner_dataset_description.json
sub-04570_task-rest_space-scanner_desc-confounds_timeseries.tsv
sub-04570_task-rest_space-scanner_desc-limited_S0map.nii.gz
sub-04570_task-rest_space-scanner_desc-limited_T2starmap.nii.gz
sub-04570_task-rest_space-scanner_desc-optcom_bold.nii.gz
sub-04570_task-rest_space-scanner_desc-rmse_statmap.nii.gz
sub-04570_task-rest_space-scanner_desc-tedana_registry.json
fig, ax = plt.subplots(figsize=(16, 8))
plotting.plot_stat_map(
os.path.join(out_dir, "sub-04570_task-rest_space-scanner_T2starmap.nii.gz"),
vmax=0.6,
draw_cross=False,
bg_img=None,
figure=fig,
axes=ax,
)
glue("figure_t2starmap", fig, display=False)
<Figure size 1600x800 with 5 Axes>
Fig. 22 T2* map estimated from multi-echo data using tedana’s t2smap_workflow()
.#
fig, ax = plt.subplots(figsize=(16, 8))
plotting.plot_stat_map(
os.path.join(out_dir, "sub-04570_task-rest_space-scanner_S0map.nii.gz"),
vmax=8000,
draw_cross=False,
bg_img=None,
figure=fig,
axes=ax,
)
glue("figure_s0map", fig, display=False)
<Figure size 1600x800 with 5 Axes>
Fig. 23 S0 map estimated from multi-echo data using tedana’s t2smap_workflow()
.#
fig, axes = plt.subplots(figsize=(16, 15), nrows=5)
plotting.plot_epi(
image.mean_img(data_files[0]),
draw_cross=False,
bg_img=None,
cut_coords=[-10, 0, 10, 20, 30, 40, 50, 60, 70],
display_mode="z",
figure=fig,
axes=axes[0],
)
plotting.plot_epi(
image.mean_img(data_files[1]),
draw_cross=False,
bg_img=None,
cut_coords=[-10, 0, 10, 20, 30, 40, 50, 60, 70],
display_mode="z",
figure=fig,
axes=axes[1],
)
plotting.plot_epi(
image.mean_img(data_files[2]),
draw_cross=False,
bg_img=None,
cut_coords=[-10, 0, 10, 20, 30, 40, 50, 60, 70],
display_mode="z",
figure=fig,
axes=axes[2],
)
plotting.plot_epi(
image.mean_img(data_files[3]),
draw_cross=False,
bg_img=None,
cut_coords=[-10, 0, 10, 20, 30, 40, 50, 60, 70],
display_mode="z",
figure=fig,
axes=axes[3],
)
plotting.plot_epi(
image.mean_img(
os.path.join(
out_dir, "sub-04570_task-rest_space-scanner_desc-optcom_bold.nii.gz"
)
),
draw_cross=False,
bg_img=None,
cut_coords=[-10, 0, 10, 20, 30, 40, 50, 60, 70],
display_mode="z",
figure=fig,
axes=axes[4],
)
glue("figure_t2smap_epi_plots", fig, display=False)
<Figure size 1600x1500 with 50 Axes>
Fig. 24 Mean map of each of the echoes in the original data, along with the mean map of the optimally combined data.#
te30_tsnr = image.math_img(
"(np.nanmean(img, axis=3) / np.nanstd(img, axis=3)) * mask",
img=data_files[1],
mask=mask_file,
)
oc_tsnr = image.math_img(
"(np.nanmean(img, axis=3) / np.nanstd(img, axis=3)) * mask",
img=os.path.join(
out_dir, "sub-04570_task-rest_space-scanner_desc-optcom_bold.nii.gz"
),
mask=mask_file,
)
vmax = np.nanmax(np.abs(oc_tsnr.get_fdata()))
fig, axes = plt.subplots(figsize=(10, 8), nrows=2)
plotting.plot_stat_map(
te30_tsnr,
draw_cross=False,
bg_img=None,
threshold=0.1,
cut_coords=[0, 10, 10],
vmax=vmax,
symmetric_cbar=False,
figure=fig,
axes=axes[0],
)
axes[0].set_title("TE30 TSNR", fontsize=16)
plotting.plot_stat_map(
oc_tsnr,
draw_cross=False,
bg_img=None,
threshold=0.1,
cut_coords=[0, 10, 10],
vmax=vmax,
symmetric_cbar=False,
figure=fig,
axes=axes[1],
)
axes[1].set_title("Optimal Combination TSNR", fontsize=16)
glue("figure_t2smap_t2snr", fig, display=False)
<string>:1: RuntimeWarning: invalid value encountered in divide
/opt/hostedtoolcache/Python/3.10.18/x64/lib/python3.10/site-packages/nilearn/plotting/img_plotting.py:1317: UserWarning: Non-finite values detected. These values will be replaced with zeros.
safe_get_data(stat_map_img, ensure_finite=True),
<Figure size 1000x800 with 10 Axes>
Fig. 25 TSNR map of each of the echoes in the original data, along with the TSNR map of the optimally combined data.#
fig, ax = plt.subplots(figsize=(16, 8))
plotting.plot_carpet(
data_files[1],
figure=fig,
axes=ax,
)
glue("figure_echo2_carpet", fig, display=False)
<Figure size 1600x800 with 1 Axes>
Fig. 26 Carpet plot of the second echo’s data.#
fig, ax = plt.subplots(figsize=(16, 8))
plotting.plot_carpet(
os.path.join(out_dir, "sub-04570_task-rest_space-scanner_desc-optcom_bold.nii.gz"),
axes=ax,
)
glue("figure_optcom_carpet", fig, display=False)
<Figure size 1600x800 with 1 Axes>
Fig. 27 Carpet plot of the optimally combined data.#