Optimal combination with t2smap
#
Use t2smap
[DuPre et al., 2021] to combine data.
import os
from glob import glob
import matplotlib.pyplot as plt
import numpy as np
from myst_nb import glue
from nilearn import image, plotting
from repo2data.repo2data import Repo2Data
from tedana import workflows
# Install the data if running locally, or point to cached data if running on neurolibre
DATA_REQ_FILE = os.path.join("../binder/data_requirement.json")
# Download data
repo2data = Repo2Data(DATA_REQ_FILE)
data_path = repo2data.install()
data_path = os.path.abspath(data_path[0])
---- repo2data starting ----
/opt/hostedtoolcache/Python/3.10.15/x64/lib/python3.10/site-packages/repo2data
Config from file :
../binder/data_requirement.json
Destination:
./../data/multi-echo-data-analysis
Info : ./../data/multi-echo-data-analysis already downloaded
/opt/hostedtoolcache/Python/3.10.15/x64/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
from .autonotebook import tqdm as notebook_tqdm
func_dir = os.path.join(data_path, "func/")
data_files = [
os.path.join(
func_dir,
"sub-04570_task-rest_echo-1_space-scanner_desc-partialPreproc_bold.nii.gz",
),
os.path.join(
func_dir,
"sub-04570_task-rest_echo-2_space-scanner_desc-partialPreproc_bold.nii.gz",
),
os.path.join(
func_dir,
"sub-04570_task-rest_echo-3_space-scanner_desc-partialPreproc_bold.nii.gz",
),
os.path.join(
func_dir,
"sub-04570_task-rest_echo-4_space-scanner_desc-partialPreproc_bold.nii.gz",
),
]
echo_times = [12.0, 28.0, 44.0, 60.0]
mask_file = os.path.join(
func_dir, "sub-04570_task-rest_space-scanner_desc-brain_mask.nii.gz"
)
confounds_file = os.path.join(
func_dir, "sub-04570_task-rest_desc-confounds_timeseries.tsv"
)
out_dir = os.path.join(data_path, "t2smap")
workflows.t2smap_workflow(
data_files,
echo_times,
out_dir=out_dir,
mask=mask_file,
prefix="sub-04570_task-rest_space-scanner",
fittype="curvefit",
)
INFO t2smap:t2smap_workflow:252 Using output directory: /home/runner/work/multi-echo-data-analysis/multi-echo-data-analysis/data/multi-echo-data-analysis/t2smap
INFO t2smap:t2smap_workflow:278 Loading input data: ['/home/runner/work/multi-echo-data-analysis/multi-echo-data-analysis/data/multi-echo-data-analysis/func/sub-04570_task-rest_echo-1_space-scanner_desc-partialPreproc_bold.nii.gz', '/home/runner/work/multi-echo-data-analysis/multi-echo-data-analysis/data/multi-echo-data-analysis/func/sub-04570_task-rest_echo-2_space-scanner_desc-partialPreproc_bold.nii.gz', '/home/runner/work/multi-echo-data-analysis/multi-echo-data-analysis/data/multi-echo-data-analysis/func/sub-04570_task-rest_echo-3_space-scanner_desc-partialPreproc_bold.nii.gz', '/home/runner/work/multi-echo-data-analysis/multi-echo-data-analysis/data/multi-echo-data-analysis/func/sub-04570_task-rest_echo-4_space-scanner_desc-partialPreproc_bold.nii.gz']
INFO t2smap:t2smap_workflow:298 Using user-defined mask
INFO utils:make_adaptive_mask:198 Echo-wise intensity thresholds for adaptive mask: [258.33994278 180.98638476 134.6796175 91.51006253]
WARNING utils:make_adaptive_mask:227 734 voxels in user-defined mask do not have good signal. Removing voxels from mask.
INFO t2smap:t2smap_workflow:306 Computing adaptive T2* map
2-echo monoexponential: 0%| | 0/2224 [00:00<?, ?it/s]
2-echo monoexponential: 3%|▎ | 57/2224 [00:00<00:03, 568.98it/s]
2-echo monoexponential: 6%|▌ | 135/2224 [00:00<00:03, 692.82it/s]
2-echo monoexponential: 10%|▉ | 215/2224 [00:00<00:02, 741.32it/s]
2-echo monoexponential: 13%|█▎ | 296/2224 [00:00<00:02, 766.47it/s]
2-echo monoexponential: 17%|█▋ | 374/2224 [00:00<00:02, 769.78it/s]
2-echo monoexponential: 20%|██ | 455/2224 [00:00<00:02, 782.02it/s]
2-echo monoexponential: 24%|██▍ | 535/2224 [00:00<00:02, 785.00it/s]
2-echo monoexponential: 28%|██▊ | 614/2224 [00:00<00:02, 777.28it/s]
2-echo monoexponential: 31%|███ | 692/2224 [00:00<00:01, 774.32it/s]
2-echo monoexponential: 35%|███▍ | 770/2224 [00:01<00:01, 766.49it/s]
2-echo monoexponential: 38%|███▊ | 848/2224 [00:01<00:01, 768.96it/s]
2-echo monoexponential: 42%|████▏ | 926/2224 [00:01<00:01, 770.00it/s]
2-echo monoexponential: 45%|████▌ | 1004/2224 [00:01<00:01, 768.86it/s]
2-echo monoexponential: 49%|████▊ | 1084/2224 [00:01<00:01, 776.46it/s]
2-echo monoexponential: 52%|█████▏ | 1162/2224 [00:01<00:01, 768.33it/s]
2-echo monoexponential: 56%|█████▌ | 1241/2224 [00:01<00:01, 772.86it/s]
2-echo monoexponential: 59%|█████▉ | 1319/2224 [00:01<00:01, 773.26it/s]
2-echo monoexponential: 63%|██████▎ | 1397/2224 [00:01<00:01, 771.84it/s]
2-echo monoexponential: 66%|██████▋ | 1475/2224 [00:01<00:00, 772.90it/s]
2-echo monoexponential: 70%|██████▉ | 1553/2224 [00:02<00:00, 765.46it/s]
2-echo monoexponential: 73%|███████▎ | 1632/2224 [00:02<00:00, 771.66it/s]
2-echo monoexponential: 77%|███████▋ | 1710/2224 [00:02<00:00, 769.59it/s]
2-echo monoexponential: 80%|████████ | 1788/2224 [00:02<00:00, 771.92it/s]
2-echo monoexponential: 84%|████████▍ | 1869/2224 [00:02<00:00, 780.59it/s]
2-echo monoexponential: 88%|████████▊ | 1950/2224 [00:02<00:00, 786.98it/s]
2-echo monoexponential: 91%|█████████ | 2029/2224 [00:02<00:00, 781.29it/s]
2-echo monoexponential: 95%|█████████▍| 2108/2224 [00:02<00:00, 779.48it/s]
2-echo monoexponential: 98%|█████████▊| 2186/2224 [00:02<00:00, 765.70it/s]
2-echo monoexponential: 100%|██████████| 2224/2224 [00:02<00:00, 767.85it/s]
3-echo monoexponential: 0%| | 0/1092 [00:00<?, ?it/s]
3-echo monoexponential: 4%|▍ | 48/1092 [00:00<00:02, 473.50it/s]
3-echo monoexponential: 9%|▉ | 98/1092 [00:00<00:02, 484.00it/s]
3-echo monoexponential: 14%|█▎ | 150/1092 [00:00<00:01, 500.23it/s]
3-echo monoexponential: 19%|█▊ | 203/1092 [00:00<00:01, 506.27it/s]
3-echo monoexponential: 23%|██▎ | 255/1092 [00:00<00:01, 508.12it/s]
3-echo monoexponential: 28%|██▊ | 306/1092 [00:00<00:01, 503.98it/s]
3-echo monoexponential: 33%|███▎ | 357/1092 [00:00<00:01, 501.42it/s]
3-echo monoexponential: 37%|███▋ | 408/1092 [00:00<00:01, 493.54it/s]
3-echo monoexponential: 42%|████▏ | 459/1092 [00:00<00:01, 494.58it/s]
3-echo monoexponential: 47%|████▋ | 510/1092 [00:01<00:01, 496.85it/s]
3-echo monoexponential: 51%|█████▏ | 561/1092 [00:01<00:01, 497.86it/s]
3-echo monoexponential: 56%|█████▌ | 611/1092 [00:01<00:00, 490.78it/s]
3-echo monoexponential: 61%|██████ | 664/1092 [00:01<00:00, 500.32it/s]
3-echo monoexponential: 65%|██████▌ | 715/1092 [00:01<00:00, 492.44it/s]
3-echo monoexponential: 70%|███████ | 765/1092 [00:01<00:00, 490.45it/s]
3-echo monoexponential: 75%|███████▍ | 815/1092 [00:01<00:00, 490.66it/s]
3-echo monoexponential: 79%|███████▉ | 865/1092 [00:01<00:00, 491.48it/s]
3-echo monoexponential: 84%|████████▍ | 918/1092 [00:01<00:00, 501.43it/s]
3-echo monoexponential: 89%|████████▉ | 970/1092 [00:01<00:00, 505.52it/s]
3-echo monoexponential: 93%|█████████▎| 1021/1092 [00:02<00:00, 506.02it/s]
3-echo monoexponential: 98%|█████████▊| 1072/1092 [00:02<00:00, 499.11it/s]
3-echo monoexponential: 100%|██████████| 1092/1092 [00:02<00:00, 498.05it/s]
4-echo monoexponential: 0%| | 0/20176 [00:00<?, ?it/s]
4-echo monoexponential: 0%| | 50/20176 [00:00<00:40, 499.65it/s]
4-echo monoexponential: 1%| | 104/20176 [00:00<00:38, 520.68it/s]
4-echo monoexponential: 1%| | 161/20176 [00:00<00:37, 539.27it/s]
4-echo monoexponential: 1%| | 220/20176 [00:00<00:35, 558.75it/s]
4-echo monoexponential: 1%|▏ | 277/20176 [00:00<00:35, 559.76it/s]
4-echo monoexponential: 2%|▏ | 336/20176 [00:00<00:34, 567.11it/s]
4-echo monoexponential: 2%|▏ | 395/20176 [00:00<00:34, 573.91it/s]
4-echo monoexponential: 2%|▏ | 453/20176 [00:00<00:34, 569.62it/s]
4-echo monoexponential: 3%|▎ | 513/20176 [00:00<00:34, 577.63it/s]
4-echo monoexponential: 3%|▎ | 571/20176 [00:01<00:34, 575.42it/s]
4-echo monoexponential: 3%|▎ | 629/20176 [00:01<00:34, 567.77it/s]
4-echo monoexponential: 3%|▎ | 686/20176 [00:01<00:34, 567.09it/s]
4-echo monoexponential: 4%|▎ | 744/20176 [00:01<00:34, 570.34it/s]
4-echo monoexponential: 4%|▍ | 802/20176 [00:01<00:33, 572.12it/s]
4-echo monoexponential: 4%|▍ | 860/20176 [00:01<00:33, 573.69it/s]
4-echo monoexponential: 5%|▍ | 920/20176 [00:01<00:33, 579.30it/s]
4-echo monoexponential: 5%|▍ | 978/20176 [00:01<00:33, 569.86it/s]
4-echo monoexponential: 5%|▌ | 1036/20176 [00:01<00:34, 550.61it/s]
4-echo monoexponential: 5%|▌ | 1092/20176 [00:01<00:34, 548.10it/s]
4-echo monoexponential: 6%|▌ | 1148/20176 [00:02<00:34, 550.79it/s]
4-echo monoexponential: 6%|▌ | 1207/20176 [00:02<00:33, 561.82it/s]
4-echo monoexponential: 6%|▋ | 1267/20176 [00:02<00:33, 571.51it/s]
4-echo monoexponential: 7%|▋ | 1328/20176 [00:02<00:32, 582.04it/s]
4-echo monoexponential: 7%|▋ | 1391/20176 [00:02<00:31, 593.88it/s]
4-echo monoexponential: 7%|▋ | 1451/20176 [00:02<00:32, 576.35it/s]
4-echo monoexponential: 7%|▋ | 1509/20176 [00:02<00:33, 563.90it/s]
4-echo monoexponential: 8%|▊ | 1569/20176 [00:02<00:32, 573.84it/s]
4-echo monoexponential: 8%|▊ | 1629/20176 [00:02<00:32, 579.53it/s]
4-echo monoexponential: 8%|▊ | 1690/20176 [00:02<00:31, 586.85it/s]
4-echo monoexponential: 9%|▊ | 1751/20176 [00:03<00:31, 591.72it/s]
4-echo monoexponential: 9%|▉ | 1811/20176 [00:03<00:30, 593.53it/s]
4-echo monoexponential: 9%|▉ | 1872/20176 [00:03<00:30, 598.31it/s]
4-echo monoexponential: 10%|▉ | 1932/20176 [00:03<00:30, 598.60it/s]
4-echo monoexponential: 10%|▉ | 1992/20176 [00:03<00:31, 574.63it/s]
4-echo monoexponential: 10%|█ | 2050/20176 [00:03<00:31, 576.15it/s]
4-echo monoexponential: 10%|█ | 2109/20176 [00:03<00:31, 578.49it/s]
4-echo monoexponential: 11%|█ | 2169/20176 [00:03<00:30, 582.98it/s]
4-echo monoexponential: 11%|█ | 2232/20176 [00:03<00:30, 596.80it/s]
4-echo monoexponential: 11%|█▏ | 2294/20176 [00:03<00:29, 601.59it/s]
4-echo monoexponential: 12%|█▏ | 2356/20176 [00:04<00:29, 604.05it/s]
4-echo monoexponential: 12%|█▏ | 2418/20176 [00:04<00:29, 607.18it/s]
4-echo monoexponential: 12%|█▏ | 2481/20176 [00:04<00:28, 613.55it/s]
4-echo monoexponential: 13%|█▎ | 2543/20176 [00:04<00:28, 610.06it/s]
4-echo monoexponential: 13%|█▎ | 2605/20176 [00:04<00:30, 576.98it/s]
4-echo monoexponential: 13%|█▎ | 2664/20176 [00:04<00:30, 577.14it/s]
4-echo monoexponential: 14%|█▎ | 2726/20176 [00:04<00:29, 587.98it/s]
4-echo monoexponential: 14%|█▍ | 2786/20176 [00:04<00:29, 588.97it/s]
4-echo monoexponential: 14%|█▍ | 2849/20176 [00:04<00:28, 600.10it/s]
4-echo monoexponential: 14%|█▍ | 2911/20176 [00:05<00:28, 603.52it/s]
4-echo monoexponential: 15%|█▍ | 2972/20176 [00:05<00:28, 605.06it/s]
4-echo monoexponential: 15%|█▌ | 3035/20176 [00:05<00:27, 612.23it/s]
4-echo monoexponential: 15%|█▌ | 3098/20176 [00:05<00:27, 614.50it/s]
4-echo monoexponential: 16%|█▌ | 3160/20176 [00:05<00:27, 615.83it/s]
4-echo monoexponential: 16%|█▌ | 3222/20176 [00:05<00:28, 596.24it/s]
4-echo monoexponential: 16%|█▋ | 3282/20176 [00:05<00:28, 593.75it/s]
4-echo monoexponential: 17%|█▋ | 3342/20176 [00:05<00:28, 595.06it/s]
4-echo monoexponential: 17%|█▋ | 3403/20176 [00:05<00:28, 596.20it/s]
4-echo monoexponential: 17%|█▋ | 3464/20176 [00:05<00:27, 597.70it/s]
4-echo monoexponential: 17%|█▋ | 3527/20176 [00:06<00:27, 606.59it/s]
4-echo monoexponential: 18%|█▊ | 3590/20176 [00:06<00:27, 611.99it/s]
4-echo monoexponential: 18%|█▊ | 3652/20176 [00:06<00:27, 609.63it/s]
4-echo monoexponential: 18%|█▊ | 3713/20176 [00:06<00:27, 607.16it/s]
4-echo monoexponential: 19%|█▊ | 3777/20176 [00:06<00:26, 613.38it/s]
4-echo monoexponential: 19%|█▉ | 3839/20176 [00:06<00:26, 608.41it/s]
4-echo monoexponential: 19%|█▉ | 3900/20176 [00:06<00:27, 602.31it/s]
4-echo monoexponential: 20%|█▉ | 3961/20176 [00:06<00:27, 590.17it/s]
4-echo monoexponential: 20%|█▉ | 4021/20176 [00:06<00:27, 592.35it/s]
4-echo monoexponential: 20%|██ | 4082/20176 [00:06<00:27, 595.01it/s]
4-echo monoexponential: 21%|██ | 4142/20176 [00:07<00:27, 589.22it/s]
4-echo monoexponential: 21%|██ | 4202/20176 [00:07<00:27, 590.50it/s]
4-echo monoexponential: 21%|██ | 4264/20176 [00:07<00:26, 598.73it/s]
4-echo monoexponential: 21%|██▏ | 4328/20176 [00:07<00:26, 608.85it/s]
4-echo monoexponential: 22%|██▏ | 4389/20176 [00:07<00:26, 602.10it/s]
4-echo monoexponential: 22%|██▏ | 4452/20176 [00:07<00:25, 607.64it/s]
4-echo monoexponential: 22%|██▏ | 4514/20176 [00:07<00:25, 609.72it/s]
4-echo monoexponential: 23%|██▎ | 4575/20176 [00:07<00:25, 609.79it/s]
4-echo monoexponential: 23%|██▎ | 4636/20176 [00:07<00:25, 605.39it/s]
4-echo monoexponential: 23%|██▎ | 4697/20176 [00:07<00:26, 588.29it/s]
4-echo monoexponential: 24%|██▎ | 4756/20176 [00:08<00:26, 586.56it/s]
4-echo monoexponential: 24%|██▍ | 4817/20176 [00:08<00:25, 591.07it/s]
4-echo monoexponential: 24%|██▍ | 4877/20176 [00:08<00:25, 591.32it/s]
4-echo monoexponential: 24%|██▍ | 4938/20176 [00:08<00:25, 595.39it/s]
4-echo monoexponential: 25%|██▍ | 5001/20176 [00:08<00:25, 603.55it/s]
4-echo monoexponential: 25%|██▌ | 5064/20176 [00:08<00:24, 609.42it/s]
4-echo monoexponential: 25%|██▌ | 5129/20176 [00:08<00:24, 619.04it/s]
4-echo monoexponential: 26%|██▌ | 5192/20176 [00:08<00:24, 620.94it/s]
4-echo monoexponential: 26%|██▌ | 5255/20176 [00:08<00:24, 621.31it/s]
4-echo monoexponential: 26%|██▋ | 5318/20176 [00:09<00:23, 620.71it/s]
4-echo monoexponential: 27%|██▋ | 5381/20176 [00:09<00:24, 613.70it/s]
4-echo monoexponential: 27%|██▋ | 5443/20176 [00:09<00:24, 589.64it/s]
4-echo monoexponential: 27%|██▋ | 5503/20176 [00:09<00:24, 589.98it/s]
4-echo monoexponential: 28%|██▊ | 5564/20176 [00:09<00:24, 593.92it/s]
4-echo monoexponential: 28%|██▊ | 5624/20176 [00:09<00:24, 591.07it/s]
4-echo monoexponential: 28%|██▊ | 5686/20176 [00:09<00:24, 597.61it/s]
4-echo monoexponential: 29%|██▊ | 5751/20176 [00:09<00:23, 610.93it/s]
4-echo monoexponential: 29%|██▉ | 5815/20176 [00:09<00:23, 618.72it/s]
4-echo monoexponential: 29%|██▉ | 5877/20176 [00:09<00:23, 615.05it/s]
4-echo monoexponential: 29%|██▉ | 5939/20176 [00:10<00:23, 616.06it/s]
4-echo monoexponential: 30%|██▉ | 6001/20176 [00:10<00:23, 607.03it/s]
4-echo monoexponential: 30%|███ | 6062/20176 [00:10<00:23, 606.60it/s]
4-echo monoexponential: 30%|███ | 6123/20176 [00:10<00:23, 604.37it/s]
4-echo monoexponential: 31%|███ | 6184/20176 [00:10<00:23, 594.81it/s]
4-echo monoexponential: 31%|███ | 6244/20176 [00:10<00:24, 574.65it/s]
4-echo monoexponential: 31%|███ | 6303/20176 [00:10<00:23, 578.51it/s]
4-echo monoexponential: 32%|███▏ | 6361/20176 [00:10<00:23, 576.35it/s]
4-echo monoexponential: 32%|███▏ | 6420/20176 [00:10<00:23, 578.92it/s]
4-echo monoexponential: 32%|███▏ | 6482/20176 [00:10<00:23, 588.91it/s]
4-echo monoexponential: 32%|███▏ | 6544/20176 [00:11<00:22, 596.80it/s]
4-echo monoexponential: 33%|███▎ | 6606/20176 [00:11<00:22, 602.25it/s]
4-echo monoexponential: 33%|███▎ | 6667/20176 [00:11<00:22, 598.55it/s]
4-echo monoexponential: 33%|███▎ | 6727/20176 [00:11<00:22, 596.96it/s]
4-echo monoexponential: 34%|███▎ | 6790/20176 [00:11<00:22, 603.51it/s]
4-echo monoexponential: 34%|███▍ | 6851/20176 [00:11<00:22, 597.94it/s]
4-echo monoexponential: 34%|███▍ | 6911/20176 [00:11<00:22, 597.39it/s]
4-echo monoexponential: 35%|███▍ | 6971/20176 [00:11<00:22, 574.40it/s]
4-echo monoexponential: 35%|███▍ | 7029/20176 [00:11<00:23, 569.48it/s]
4-echo monoexponential: 35%|███▌ | 7090/20176 [00:11<00:22, 578.81it/s]
4-echo monoexponential: 35%|███▌ | 7149/20176 [00:12<00:22, 580.24it/s]
4-echo monoexponential: 36%|███▌ | 7208/20176 [00:12<00:22, 576.71it/s]
4-echo monoexponential: 36%|███▌ | 7270/20176 [00:12<00:21, 588.49it/s]
4-echo monoexponential: 36%|███▋ | 7332/20176 [00:12<00:21, 594.96it/s]
4-echo monoexponential: 37%|███▋ | 7394/20176 [00:12<00:21, 600.49it/s]
4-echo monoexponential: 37%|███▋ | 7455/20176 [00:12<00:21, 592.14it/s]
4-echo monoexponential: 37%|███▋ | 7515/20176 [00:12<00:21, 591.75it/s]
4-echo monoexponential: 38%|███▊ | 7575/20176 [00:12<00:21, 591.28it/s]
4-echo monoexponential: 38%|███▊ | 7636/20176 [00:12<00:21, 595.13it/s]
4-echo monoexponential: 38%|███▊ | 7696/20176 [00:13<00:21, 591.27it/s]
4-echo monoexponential: 38%|███▊ | 7756/20176 [00:13<00:21, 573.71it/s]
4-echo monoexponential: 39%|███▊ | 7814/20176 [00:13<00:21, 571.06it/s]
4-echo monoexponential: 39%|███▉ | 7872/20176 [00:13<00:21, 568.97it/s]
4-echo monoexponential: 39%|███▉ | 7931/20176 [00:13<00:21, 573.81it/s]
4-echo monoexponential: 40%|███▉ | 7990/20176 [00:13<00:21, 577.83it/s]
4-echo monoexponential: 40%|███▉ | 8048/20176 [00:13<00:21, 575.68it/s]
4-echo monoexponential: 40%|████ | 8111/20176 [00:13<00:20, 591.60it/s]
4-echo monoexponential: 41%|████ | 8173/20176 [00:13<00:20, 597.31it/s]
4-echo monoexponential: 41%|████ | 8233/20176 [00:13<00:20, 592.85it/s]
4-echo monoexponential: 41%|████ | 8295/20176 [00:14<00:19, 600.41it/s]
4-echo monoexponential: 41%|████▏ | 8356/20176 [00:14<00:19, 597.32it/s]
4-echo monoexponential: 42%|████▏ | 8416/20176 [00:14<00:19, 592.49it/s]
4-echo monoexponential: 42%|████▏ | 8478/20176 [00:14<00:19, 599.97it/s]
4-echo monoexponential: 42%|████▏ | 8539/20176 [00:14<00:19, 590.76it/s]
4-echo monoexponential: 43%|████▎ | 8599/20176 [00:14<00:20, 577.43it/s]
4-echo monoexponential: 43%|████▎ | 8657/20176 [00:14<00:19, 577.18it/s]
4-echo monoexponential: 43%|████▎ | 8715/20176 [00:14<00:20, 570.42it/s]
4-echo monoexponential: 43%|████▎ | 8775/20176 [00:14<00:19, 577.44it/s]
4-echo monoexponential: 44%|████▍ | 8836/20176 [00:14<00:19, 586.56it/s]
4-echo monoexponential: 44%|████▍ | 8895/20176 [00:15<00:19, 587.32it/s]
4-echo monoexponential: 44%|████▍ | 8954/20176 [00:15<00:19, 586.08it/s]
4-echo monoexponential: 45%|████▍ | 9017/20176 [00:15<00:18, 598.30it/s]
4-echo monoexponential: 45%|████▍ | 9077/20176 [00:15<00:18, 596.09it/s]
4-echo monoexponential: 45%|████▌ | 9139/20176 [00:15<00:18, 602.09it/s]
4-echo monoexponential: 46%|████▌ | 9203/20176 [00:15<00:17, 612.97it/s]
4-echo monoexponential: 46%|████▌ | 9265/20176 [00:15<00:17, 614.45it/s]
4-echo monoexponential: 46%|████▌ | 9327/20176 [00:15<00:17, 615.57it/s]
4-echo monoexponential: 47%|████▋ | 9389/20176 [00:15<00:18, 585.75it/s]
4-echo monoexponential: 47%|████▋ | 9449/20176 [00:16<00:18, 582.20it/s]
4-echo monoexponential: 47%|████▋ | 9508/20176 [00:16<00:18, 575.78it/s]
4-echo monoexponential: 47%|████▋ | 9567/20176 [00:16<00:18, 578.85it/s]
4-echo monoexponential: 48%|████▊ | 9628/20176 [00:16<00:18, 585.81it/s]
4-echo monoexponential: 48%|████▊ | 9687/20176 [00:16<00:17, 586.11it/s]
4-echo monoexponential: 48%|████▊ | 9749/20176 [00:16<00:17, 594.28it/s]
4-echo monoexponential: 49%|████▊ | 9810/20176 [00:16<00:17, 596.06it/s]
4-echo monoexponential: 49%|████▉ | 9871/20176 [00:16<00:17, 597.25it/s]
4-echo monoexponential: 49%|████▉ | 9935/20176 [00:16<00:16, 607.41it/s]
4-echo monoexponential: 50%|████▉ | 10000/20176 [00:16<00:16, 619.86it/s]
4-echo monoexponential: 50%|████▉ | 10063/20176 [00:17<00:16, 619.26it/s]
4-echo monoexponential: 50%|█████ | 10125/20176 [00:17<00:16, 609.22it/s]
4-echo monoexponential: 50%|█████ | 10186/20176 [00:17<00:17, 574.85it/s]
4-echo monoexponential: 51%|█████ | 10244/20176 [00:17<00:17, 573.10it/s]
4-echo monoexponential: 51%|█████ | 10304/20176 [00:17<00:17, 578.40it/s]
4-echo monoexponential: 51%|█████▏ | 10364/20176 [00:17<00:16, 584.21it/s]
4-echo monoexponential: 52%|█████▏ | 10423/20176 [00:17<00:16, 584.47it/s]
4-echo monoexponential: 52%|█████▏ | 10487/20176 [00:17<00:16, 597.88it/s]
4-echo monoexponential: 52%|█████▏ | 10549/20176 [00:17<00:15, 603.82it/s]
4-echo monoexponential: 53%|█████▎ | 10610/20176 [00:17<00:15, 605.27it/s]
4-echo monoexponential: 53%|█████▎ | 10671/20176 [00:18<00:15, 596.06it/s]
4-echo monoexponential: 53%|█████▎ | 10733/20176 [00:18<00:15, 601.86it/s]
4-echo monoexponential: 54%|█████▎ | 10797/20176 [00:18<00:15, 611.40it/s]
4-echo monoexponential: 54%|█████▍ | 10859/20176 [00:18<00:15, 607.13it/s]
4-echo monoexponential: 54%|█████▍ | 10921/20176 [00:18<00:15, 609.28it/s]
4-echo monoexponential: 54%|█████▍ | 10982/20176 [00:18<00:15, 585.90it/s]
4-echo monoexponential: 55%|█████▍ | 11041/20176 [00:18<00:15, 578.14it/s]
4-echo monoexponential: 55%|█████▌ | 11099/20176 [00:18<00:15, 578.25it/s]
4-echo monoexponential: 55%|█████▌ | 11157/20176 [00:18<00:15, 576.51it/s]
4-echo monoexponential: 56%|█████▌ | 11223/20176 [00:18<00:14, 598.64it/s]
4-echo monoexponential: 56%|█████▌ | 11284/20176 [00:19<00:14, 599.85it/s]
4-echo monoexponential: 56%|█████▌ | 11345/20176 [00:19<00:14, 591.85it/s]
4-echo monoexponential: 57%|█████▋ | 11405/20176 [00:19<00:14, 589.33it/s]
4-echo monoexponential: 57%|█████▋ | 11465/20176 [00:19<00:14, 590.82it/s]
4-echo monoexponential: 57%|█████▋ | 11526/20176 [00:19<00:14, 593.67it/s]
4-echo monoexponential: 57%|█████▋ | 11589/20176 [00:19<00:14, 601.43it/s]
4-echo monoexponential: 58%|█████▊ | 11652/20176 [00:19<00:14, 606.62it/s]
4-echo monoexponential: 58%|█████▊ | 11713/20176 [00:19<00:13, 606.93it/s]
4-echo monoexponential: 58%|█████▊ | 11774/20176 [00:19<00:15, 549.70it/s]
4-echo monoexponential: 59%|█████▊ | 11833/20176 [00:20<00:14, 558.64it/s]
4-echo monoexponential: 59%|█████▉ | 11892/20176 [00:20<00:14, 564.84it/s]
4-echo monoexponential: 59%|█████▉ | 11952/20176 [00:20<00:14, 573.71it/s]
4-echo monoexponential: 60%|█████▉ | 12013/20176 [00:20<00:13, 583.35it/s]
4-echo monoexponential: 60%|█████▉ | 12073/20176 [00:20<00:13, 585.70it/s]
4-echo monoexponential: 60%|██████ | 12135/20176 [00:20<00:13, 595.77it/s]
4-echo monoexponential: 60%|██████ | 12198/20176 [00:20<00:13, 605.50it/s]
4-echo monoexponential: 61%|██████ | 12261/20176 [00:20<00:12, 612.26it/s]
4-echo monoexponential: 61%|██████ | 12324/20176 [00:20<00:12, 616.10it/s]
4-echo monoexponential: 61%|██████▏ | 12386/20176 [00:20<00:12, 614.86it/s]
4-echo monoexponential: 62%|██████▏ | 12448/20176 [00:21<00:12, 615.73it/s]
4-echo monoexponential: 62%|██████▏ | 12510/20176 [00:21<00:12, 612.87it/s]
4-echo monoexponential: 62%|██████▏ | 12572/20176 [00:21<00:13, 566.15it/s]
4-echo monoexponential: 63%|██████▎ | 12633/20176 [00:21<00:13, 576.49it/s]
4-echo monoexponential: 63%|██████▎ | 12696/20176 [00:21<00:12, 590.29it/s]
4-echo monoexponential: 63%|██████▎ | 12757/20176 [00:21<00:12, 595.90it/s]
4-echo monoexponential: 64%|██████▎ | 12820/20176 [00:21<00:12, 604.37it/s]
4-echo monoexponential: 64%|██████▍ | 12883/20176 [00:21<00:11, 611.77it/s]
4-echo monoexponential: 64%|██████▍ | 12945/20176 [00:21<00:11, 611.99it/s]
4-echo monoexponential: 64%|██████▍ | 13007/20176 [00:21<00:11, 613.41it/s]
4-echo monoexponential: 65%|██████▍ | 13070/20176 [00:22<00:11, 615.79it/s]
4-echo monoexponential: 65%|██████▌ | 13132/20176 [00:22<00:11, 611.92it/s]
4-echo monoexponential: 65%|██████▌ | 13194/20176 [00:22<00:11, 608.30it/s]
4-echo monoexponential: 66%|██████▌ | 13255/20176 [00:22<00:11, 604.32it/s]
4-echo monoexponential: 66%|██████▌ | 13316/20176 [00:22<00:11, 597.31it/s]
4-echo monoexponential: 66%|██████▋ | 13376/20176 [00:22<00:11, 571.65it/s]
4-echo monoexponential: 67%|██████▋ | 13437/20176 [00:22<00:11, 580.55it/s]
4-echo monoexponential: 67%|██████▋ | 13497/20176 [00:22<00:11, 585.43it/s]
4-echo monoexponential: 67%|██████▋ | 13557/20176 [00:22<00:11, 589.08it/s]
4-echo monoexponential: 68%|██████▊ | 13619/20176 [00:23<00:10, 597.70it/s]
4-echo monoexponential: 68%|██████▊ | 13682/20176 [00:23<00:10, 605.48it/s]
4-echo monoexponential: 68%|██████▊ | 13745/20176 [00:23<00:10, 611.35it/s]
4-echo monoexponential: 68%|██████▊ | 13808/20176 [00:23<00:10, 614.55it/s]
4-echo monoexponential: 69%|██████▊ | 13870/20176 [00:23<00:10, 614.97it/s]
4-echo monoexponential: 69%|██████▉ | 13932/20176 [00:23<00:10, 611.95it/s]
4-echo monoexponential: 69%|██████▉ | 13995/20176 [00:23<00:10, 615.57it/s]
4-echo monoexponential: 70%|██████▉ | 14057/20176 [00:23<00:10, 610.84it/s]
4-echo monoexponential: 70%|██████▉ | 14119/20176 [00:23<00:10, 596.34it/s]
4-echo monoexponential: 70%|███████ | 14179/20176 [00:23<00:10, 584.41it/s]
4-echo monoexponential: 71%|███████ | 14238/20176 [00:24<00:10, 575.81it/s]
4-echo monoexponential: 71%|███████ | 14300/20176 [00:24<00:10, 586.22it/s]
4-echo monoexponential: 71%|███████ | 14361/20176 [00:24<00:09, 590.76it/s]
4-echo monoexponential: 71%|███████▏ | 14425/20176 [00:24<00:09, 604.53it/s]
4-echo monoexponential: 72%|███████▏ | 14492/20176 [00:24<00:09, 619.79it/s]
4-echo monoexponential: 72%|███████▏ | 14555/20176 [00:24<00:09, 621.33it/s]
4-echo monoexponential: 72%|███████▏ | 14618/20176 [00:24<00:08, 621.99it/s]
4-echo monoexponential: 73%|███████▎ | 14681/20176 [00:24<00:08, 616.96it/s]
4-echo monoexponential: 73%|███████▎ | 14743/20176 [00:24<00:08, 609.02it/s]
4-echo monoexponential: 73%|███████▎ | 14804/20176 [00:24<00:08, 607.74it/s]
4-echo monoexponential: 74%|███████▎ | 14865/20176 [00:25<00:09, 584.26it/s]
4-echo monoexponential: 74%|███████▍ | 14925/20176 [00:25<00:08, 588.03it/s]
4-echo monoexponential: 74%|███████▍ | 14985/20176 [00:25<00:08, 591.17it/s]
4-echo monoexponential: 75%|███████▍ | 15046/20176 [00:25<00:08, 593.20it/s]
4-echo monoexponential: 75%|███████▍ | 15108/20176 [00:25<00:08, 600.53it/s]
4-echo monoexponential: 75%|███████▌ | 15172/20176 [00:25<00:08, 609.77it/s]
4-echo monoexponential: 76%|███████▌ | 15234/20176 [00:25<00:08, 606.00it/s]
4-echo monoexponential: 76%|███████▌ | 15296/20176 [00:25<00:07, 610.05it/s]
4-echo monoexponential: 76%|███████▌ | 15360/20176 [00:25<00:07, 616.58it/s]
4-echo monoexponential: 76%|███████▋ | 15422/20176 [00:25<00:07, 609.18it/s]
4-echo monoexponential: 77%|███████▋ | 15485/20176 [00:26<00:07, 612.11it/s]
4-echo monoexponential: 77%|███████▋ | 15547/20176 [00:26<00:07, 608.70it/s]
4-echo monoexponential: 77%|███████▋ | 15608/20176 [00:26<00:07, 584.36it/s]
4-echo monoexponential: 78%|███████▊ | 15670/20176 [00:26<00:07, 591.74it/s]
4-echo monoexponential: 78%|███████▊ | 15734/20176 [00:26<00:07, 605.56it/s]
4-echo monoexponential: 78%|███████▊ | 15795/20176 [00:26<00:07, 584.53it/s]
4-echo monoexponential: 79%|███████▊ | 15855/20176 [00:26<00:07, 588.56it/s]
4-echo monoexponential: 79%|███████▉ | 15919/20176 [00:26<00:07, 601.82it/s]
4-echo monoexponential: 79%|███████▉ | 15983/20176 [00:26<00:06, 610.33it/s]
4-echo monoexponential: 80%|███████▉ | 16048/20176 [00:27<00:06, 619.82it/s]
4-echo monoexponential: 80%|███████▉ | 16111/20176 [00:27<00:06, 620.94it/s]
4-echo monoexponential: 80%|████████ | 16174/20176 [00:27<00:06, 608.20it/s]
4-echo monoexponential: 80%|████████ | 16236/20176 [00:27<00:06, 608.51it/s]
4-echo monoexponential: 81%|████████ | 16297/20176 [00:27<00:06, 591.94it/s]
4-echo monoexponential: 81%|████████ | 16357/20176 [00:27<00:06, 578.13it/s]
4-echo monoexponential: 81%|████████▏ | 16418/20176 [00:27<00:06, 584.51it/s]
4-echo monoexponential: 82%|████████▏ | 16477/20176 [00:27<00:06, 575.47it/s]
4-echo monoexponential: 82%|████████▏ | 16537/20176 [00:27<00:06, 581.00it/s]
4-echo monoexponential: 82%|████████▏ | 16598/20176 [00:27<00:06, 589.25it/s]
4-echo monoexponential: 83%|████████▎ | 16659/20176 [00:28<00:05, 595.07it/s]
4-echo monoexponential: 83%|████████▎ | 16725/20176 [00:28<00:05, 612.21it/s]
4-echo monoexponential: 83%|████████▎ | 16788/20176 [00:28<00:05, 615.71it/s]
4-echo monoexponential: 84%|████████▎ | 16850/20176 [00:28<00:05, 613.21it/s]
4-echo monoexponential: 84%|████████▍ | 16912/20176 [00:28<00:05, 606.15it/s]
4-echo monoexponential: 84%|████████▍ | 16973/20176 [00:28<00:05, 603.43it/s]
4-echo monoexponential: 84%|████████▍ | 17034/20176 [00:28<00:05, 572.15it/s]
4-echo monoexponential: 85%|████████▍ | 17097/20176 [00:28<00:05, 587.80it/s]
4-echo monoexponential: 85%|████████▌ | 17157/20176 [00:28<00:05, 576.48it/s]
4-echo monoexponential: 85%|████████▌ | 17215/20176 [00:29<00:05, 575.03it/s]
4-echo monoexponential: 86%|████████▌ | 17275/20176 [00:29<00:04, 581.26it/s]
4-echo monoexponential: 86%|████████▌ | 17335/20176 [00:29<00:04, 586.09it/s]
4-echo monoexponential: 86%|████████▌ | 17399/20176 [00:29<00:04, 601.65it/s]
4-echo monoexponential: 87%|████████▋ | 17460/20176 [00:29<00:04, 603.47it/s]
4-echo monoexponential: 87%|████████▋ | 17521/20176 [00:29<00:04, 595.31it/s]
4-echo monoexponential: 87%|████████▋ | 17583/20176 [00:29<00:04, 600.97it/s]
4-echo monoexponential: 87%|████████▋ | 17644/20176 [00:29<00:04, 578.03it/s]
4-echo monoexponential: 88%|████████▊ | 17703/20176 [00:29<00:04, 573.27it/s]
4-echo monoexponential: 88%|████████▊ | 17761/20176 [00:29<00:04, 570.61it/s]
4-echo monoexponential: 88%|████████▊ | 17820/20176 [00:30<00:04, 575.21it/s]
4-echo monoexponential: 89%|████████▊ | 17880/20176 [00:30<00:03, 581.11it/s]
4-echo monoexponential: 89%|████████▉ | 17942/20176 [00:30<00:03, 590.19it/s]
4-echo monoexponential: 89%|████████▉ | 18007/20176 [00:30<00:03, 605.66it/s]
4-echo monoexponential: 90%|████████▉ | 18070/20176 [00:30<00:03, 609.81it/s]
4-echo monoexponential: 90%|████████▉ | 18132/20176 [00:30<00:03, 606.12it/s]
4-echo monoexponential: 90%|█████████ | 18193/20176 [00:30<00:03, 594.44it/s]
4-echo monoexponential: 90%|█████████ | 18253/20176 [00:30<00:03, 571.54it/s]
4-echo monoexponential: 91%|█████████ | 18311/20176 [00:30<00:03, 568.27it/s]
4-echo monoexponential: 91%|█████████ | 18368/20176 [00:30<00:03, 568.59it/s]
4-echo monoexponential: 91%|█████████▏| 18425/20176 [00:31<00:03, 567.12it/s]
4-echo monoexponential: 92%|█████████▏| 18485/20176 [00:31<00:02, 576.48it/s]
4-echo monoexponential: 92%|█████████▏| 18544/20176 [00:31<00:02, 577.20it/s]
4-echo monoexponential: 92%|█████████▏| 18606/20176 [00:31<00:02, 589.07it/s]
4-echo monoexponential: 93%|█████████▎| 18666/20176 [00:31<00:02, 589.83it/s]
4-echo monoexponential: 93%|█████████▎| 18726/20176 [00:31<00:02, 575.40it/s]
4-echo monoexponential: 93%|█████████▎| 18784/20176 [00:31<00:02, 569.87it/s]
4-echo monoexponential: 93%|█████████▎| 18843/20176 [00:31<00:02, 574.25it/s]
4-echo monoexponential: 94%|█████████▎| 18901/20176 [00:31<00:02, 571.28it/s]
4-echo monoexponential: 94%|█████████▍| 18961/20176 [00:32<00:02, 577.26it/s]
4-echo monoexponential: 94%|█████████▍| 19023/20176 [00:32<00:01, 587.91it/s]
4-echo monoexponential: 95%|█████████▍| 19088/20176 [00:32<00:01, 603.89it/s]
4-echo monoexponential: 95%|█████████▍| 19149/20176 [00:32<00:01, 592.75it/s]
4-echo monoexponential: 95%|█████████▌| 19209/20176 [00:32<00:01, 573.97it/s]
4-echo monoexponential: 95%|█████████▌| 19267/20176 [00:32<00:01, 567.12it/s]
4-echo monoexponential: 96%|█████████▌| 19324/20176 [00:32<00:01, 567.71it/s]
4-echo monoexponential: 96%|█████████▌| 19381/20176 [00:32<00:01, 556.94it/s]
4-echo monoexponential: 96%|█████████▋| 19440/20176 [00:32<00:01, 566.34it/s]
4-echo monoexponential: 97%|█████████▋| 19502/20176 [00:32<00:01, 580.53it/s]
4-echo monoexponential: 97%|█████████▋| 19561/20176 [00:33<00:01, 571.12it/s]
4-echo monoexponential: 97%|█████████▋| 19621/20176 [00:33<00:00, 578.28it/s]
4-echo monoexponential: 98%|█████████▊| 19680/20176 [00:33<00:00, 580.18it/s]
4-echo monoexponential: 98%|█████████▊| 19744/20176 [00:33<00:00, 597.02it/s]
4-echo monoexponential: 98%|█████████▊| 19807/20176 [00:33<00:00, 605.09it/s]
4-echo monoexponential: 98%|█████████▊| 19868/20176 [00:33<00:00, 587.44it/s]
4-echo monoexponential: 99%|█████████▉| 19927/20176 [00:33<00:00, 577.53it/s]
4-echo monoexponential: 99%|█████████▉| 19985/20176 [00:33<00:00, 573.70it/s]
4-echo monoexponential: 99%|█████████▉| 20043/20176 [00:33<00:00, 571.10it/s]
4-echo monoexponential: 100%|█████████▉| 20101/20176 [00:33<00:00, 566.21it/s]
4-echo monoexponential: 100%|█████████▉| 20158/20176 [00:34<00:00, 563.61it/s]
4-echo monoexponential: 100%|██████████| 20176/20176 [00:34<00:00, 591.39it/s]
INFO t2smap:t2smap_workflow:319 Calculating model fit quality metrics
/opt/hostedtoolcache/Python/3.10.15/x64/lib/python3.10/site-packages/tedana/decay.py:541: RuntimeWarning: Mean of empty slice
rmse_map = np.nanmean(rmse, axis=1)
INFO t2smap:t2smap_workflow:331 Computing optimal combination
INFO combine:make_optcom:192 Optimally combining data with voxel-wise T2* estimates
INFO t2smap:t2smap_workflow:389 Workflow completed
out_files = sorted(glob(os.path.join(out_dir, "*")))
out_files = [os.path.basename(f) for f in out_files]
print("\n".join(out_files))
sub-04570_task-rest_space-scanner_S0map.nii.gz
sub-04570_task-rest_space-scanner_T2starmap.nii.gz
sub-04570_task-rest_space-scanner_dataset_description.json
sub-04570_task-rest_space-scanner_desc-confounds_timeseries.tsv
sub-04570_task-rest_space-scanner_desc-limited_S0map.nii.gz
sub-04570_task-rest_space-scanner_desc-limited_T2starmap.nii.gz
sub-04570_task-rest_space-scanner_desc-optcom_bold.nii.gz
sub-04570_task-rest_space-scanner_desc-rmse_statmap.nii.gz
sub-04570_task-rest_space-scanner_desc-tedana_registry.json
fig, ax = plt.subplots(figsize=(16, 8))
plotting.plot_stat_map(
os.path.join(out_dir, "sub-04570_task-rest_space-scanner_T2starmap.nii.gz"),
vmax=0.6,
draw_cross=False,
bg_img=None,
figure=fig,
axes=ax,
)
glue("figure_t2starmap", fig, display=False)
fig, ax = plt.subplots(figsize=(16, 8))
plotting.plot_stat_map(
os.path.join(out_dir, "sub-04570_task-rest_space-scanner_S0map.nii.gz"),
vmax=8000,
draw_cross=False,
bg_img=None,
figure=fig,
axes=ax,
)
glue("figure_s0map", fig, display=False)
fig, axes = plt.subplots(figsize=(16, 15), nrows=5)
plotting.plot_epi(
image.mean_img(data_files[0]),
draw_cross=False,
bg_img=None,
cut_coords=[-10, 0, 10, 20, 30, 40, 50, 60, 70],
display_mode="z",
figure=fig,
axes=axes[0],
)
plotting.plot_epi(
image.mean_img(data_files[1]),
draw_cross=False,
bg_img=None,
cut_coords=[-10, 0, 10, 20, 30, 40, 50, 60, 70],
display_mode="z",
figure=fig,
axes=axes[1],
)
plotting.plot_epi(
image.mean_img(data_files[2]),
draw_cross=False,
bg_img=None,
cut_coords=[-10, 0, 10, 20, 30, 40, 50, 60, 70],
display_mode="z",
figure=fig,
axes=axes[2],
)
plotting.plot_epi(
image.mean_img(data_files[3]),
draw_cross=False,
bg_img=None,
cut_coords=[-10, 0, 10, 20, 30, 40, 50, 60, 70],
display_mode="z",
figure=fig,
axes=axes[3],
)
plotting.plot_epi(
image.mean_img(
os.path.join(
out_dir, "sub-04570_task-rest_space-scanner_desc-optcom_bold.nii.gz"
)
),
draw_cross=False,
bg_img=None,
cut_coords=[-10, 0, 10, 20, 30, 40, 50, 60, 70],
display_mode="z",
figure=fig,
axes=axes[4],
)
glue("figure_t2smap_epi_plots", fig, display=False)
te30_tsnr = image.math_img(
"(np.nanmean(img, axis=3) / np.nanstd(img, axis=3)) * mask",
img=data_files[1],
mask=mask_file,
)
oc_tsnr = image.math_img(
"(np.nanmean(img, axis=3) / np.nanstd(img, axis=3)) * mask",
img=os.path.join(
out_dir, "sub-04570_task-rest_space-scanner_desc-optcom_bold.nii.gz"
),
mask=mask_file,
)
vmax = np.nanmax(np.abs(oc_tsnr.get_fdata()))
fig, axes = plt.subplots(figsize=(10, 8), nrows=2)
plotting.plot_stat_map(
te30_tsnr,
draw_cross=False,
bg_img=None,
threshold=0.1,
cut_coords=[0, 10, 10],
vmax=vmax,
symmetric_cbar=False,
figure=fig,
axes=axes[0],
)
axes[0].set_title("TE30 TSNR", fontsize=16)
plotting.plot_stat_map(
oc_tsnr,
draw_cross=False,
bg_img=None,
threshold=0.1,
cut_coords=[0, 10, 10],
vmax=vmax,
symmetric_cbar=False,
figure=fig,
axes=axes[1],
)
axes[1].set_title("Optimal Combination TSNR", fontsize=16)
glue("figure_t2smap_t2snr", fig, display=False)
<string>:1: RuntimeWarning: invalid value encountered in divide
/opt/hostedtoolcache/Python/3.10.15/x64/lib/python3.10/site-packages/nilearn/plotting/img_plotting.py:1317: UserWarning: Non-finite values detected. These values will be replaced with zeros.
safe_get_data(stat_map_img, ensure_finite=True),
fig, ax = plt.subplots(figsize=(16, 8))
plotting.plot_carpet(
data_files[1],
figure=fig,
axes=ax,
)
glue("figure_echo2_carpet", fig, display=False)
fig, ax = plt.subplots(figsize=(16, 8))
plotting.plot_carpet(
os.path.join(out_dir, "sub-04570_task-rest_space-scanner_desc-optcom_bold.nii.gz"),
axes=ax,
)
glue("figure_optcom_carpet", fig, display=False)